WSU researchers use 3-D printer to make parts from moon rock

November 28, 2012

PULLMAN, Wash. - Imagine landing on the moon or Mars, putting rocks through a 3-D printer and making something useful - like a needed wrench or replacement part.

"It sounds like science fiction, but now it's really possible," says Amit Bandyopadhyay, professor in the School of Mechanical and Materials Engineering at Washington State University.

Bandyopadhyay and a group of colleagues recently published a paper in Rapid Prototyping Journal demonstrating how to print parts using materials from the moon.

Bandyopadhyay and Susmita Bose, professor in the School of Mechanical and Materials Engineering, are well known researchers in the area of three-dimensional printing, creating bone-like materials for orthopedic implants.

In 2010, researchers from NASA initiated discussion with Bandyopadhyay, asking if their research team might be able to print 3-D objects from moon rock. Because of the tremendous expense of space travel, researchers strive to limit what space ships have to carry. Establishment of a lunar or Martian outpost would require using the materials that are on hand for construction or repairs. That's where the 3-D fabrication technology might come in.

Three-dimensional fabrication technology, also known as additive manufacturing, allows researchers to produce complex three dimensional objects directly from computer-aided design (CAD) models, printing the material layer by layer. In this case, the material is heated using a laser to high temperatures and prints out like melting candle wax to a desired shape.

To test the idea, NASA researchers provided Bandyopadhyay and Bose with 10 pounds of raw lunar regolith simulant, an imitation moon rock that is used for research purposes.

The WSU researchers were concerned about how the moon rock material, which is made of silicon, aluminum, calcium, iron and magnesium oxides, would melt, but they found it behaved similarly to silica. And, they built a few simple shapes.

The researchers are the first to demonstrate the ability to fabricate parts using the moon-like material. They sent their pieces to NASA.

"It doesn't look fantastic, but you can make something out of it," says Bandyopadhyay.

Using additive manufacturing, the material could also be tailored, the researchers say. If you want a stronger building material, for instance, you could perhaps use some moon rock with earth-based additives.

"The advantage of additive manufacturing is that you can control the composition as well as the geometry," says Bose. In the future, the researchers hope to show that the lunar material could be used to do remote repairs.

"It is an exciting science fiction story, but maybe we'll hear about it in the next few years," says Bandyopadhyay. "As long as you can have additive manufacturing set up, you may be able to scoop up and print whatever you want. It's not that far-fetched."
-end-
The research was supported by a $750,000 W.M. Keck Foundation grant.

Washington State University

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.