Nav: Home

Cultivation technologies benefit ultradwarf bermudagrass

November 28, 2016

MISSISSIPPI STATE, MS - Researchers at Mississippi State University say turfgrass professionals could benefit from more research on how new or alternative technologies compare with traditional methods for growing and maintaining ultradwarf bermudagrass putting greens. Their study in the September 2016 issue of HortScience adds to the literature by recommending the optimal combination of dry-injection (DI) cultivation technology with modified traditional hollow-tine (HT) verification programs for growing healthy greens. Ultradwarf bermudagrass is the most prevalent warm-season species used on putting greens in warm, humid regions. The grass, which features fine-textured leaf blades, short internodes, and high shoot density, has the ability to withstand low height of cut, which provides a smooth and fast putting surface. However, the grasses can quickly generate an excessive thatch-mat layer of organic matter, which negatively affects putting green performance.

Christian Baldwin, corresponding author of the study, said that it can be challenging for turfgrass managers to determine the best combination of traditional and alternative aerification practices for putting greens. "The objective of this research was to determine the best combination of dry-injection technology with modified traditional hollow-tine aerification programs to achieve minimal surface disruption without a compromise in soil physical properties, such as bulk density, volumetric water content (VWC), and water infiltration," Baldwin said.

The experiments were conducted at the Mississippi State University golf course practice putting green. Treatments included two HT sizes (0.6 and 1.3 cm diameter), various DI cultivation frequencies, and a noncultivated control.

Results indicated HT 1.3 was the most effective treatment at increasing water infiltration and reducing VWC. "Although the HT 1.3 treatment was effective at improving soil physical properties, it also had the slowest percent recovery," the authors said. "The HT 0.6 and DI treatments caused minimum disruption to the putting green surface; however, they did not provide the same improvements to the soil physical properties as the HT 1.3 treatment."

The dry-injection treatments were found to improve soil physical properties when compared with the noncultivated control.

The scientists said that DI would be best used in combination with HT 1.3 or HT 0.6 to improve soil physical properties. "DI + HT 0.6 would be the best combination as minimum surface disruption occurred, while improved soil physical properties were observed," they said. They added that their results suggested a need for an annual HT verification event due to reduced water infiltration and increased VWC in the non cultivated control treatment.
The complete study and abstract are available on the ASHS HortScience electronic journal web site:

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at

American Society for Horticultural Science

Related Research Articles:

More Research News and Research Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.