Nav: Home

Handheld, mobile data technologies compared for turfgrass

November 28, 2016

ATHENS, GA - Performance testing of natural turfgrass sports fields requires sampling to obtain information on surface properties (e.g., soil moisture, soil compaction, surface hardness, and turfgrass vigor). A study in the September 2016 issue of HortScience compared two sampling methodologies and provided recommendations to acquire reliable, cost-effective spatial data for turfgrass managers.

Chase Straw, Rebecca Grubbs, Kevin Tucker, and Gerald Henry from the Department of Crop and Soil Sciences at the University of Georgia compared handheld and mobile data acquisitions of soil moisture, soil compaction (penetration resistance), and turfgrass vigor on natural turfgrass sports fields. The experiments involved using two sampling grid sizes to determine if they would generate similar data. "Minimal research has been conducted on the spatial analysis of sports field surface properties," explained corresponding author Chase Straw. "Mobile data acquisition devices equipped with GPS are pertinent for rapid sampling of spatial data in agriculture; however, few mobile devices are currently available for use in turfgrass."

The researchers conducted studies on four natural turfgrass fields selected to represent a wide range of sport, use, management, and soil conditions. They said theirs was the first study designed to compare handheld and mobile data acquisition for spatial analysis of natural turfgrass sports fields.

Results showed that data collected on 4.8 x 4.8-m and 4.8 x 9.6-m sampling grids did not differ greatly throughout the study on any field with both handheld and mobile devices for the measured field properties. "Sampling can be conducted as intensively as desired with mobile devices; however, handheld devices can be used on a 4.8 x 9.6-m grid (120-130 samples) while still achieving the same results as the 4.8 x 4.8-m grid (230-259 samples)," the authors said.

The study demonstrated that there are advantages to both technologies. "Mobile sampling devices are the most time-efficient sampling method for spatial analysis, but they may be expensive and difficult for managers of natural turfgrass sports fields to obtain," the authors added. "Handheld sampling devices are cheaper and more abundant, but take more time to sample." Minimal differences were observed between devices when measuring soil moisture and turfgrass vigor.

The authors said that increased adoption of spatial analysis of sports field properties, coupled with enhancements in technology, can create opportunities for the use of all devices. They recommended that future research focus on multisensor devices to improve the efficiency of handheld data acquisition.
-end-
The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/51/9/1176.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org.

American Society for Horticultural Science

Related Soil Moisture Articles:

Soil bogging caused by climate change adds to the greenhouse effect, says a RUDN University soil sci
A soil scientist from RUDN University studied soil samples collected at the Tibetan Plateau and discovered that high soil moisture content (caused by the melting of permafrost and glaciers) leads to further temperature increase.
Global warming threatens soil phosphorus, says a soil scientist from RUDN University
A soil scientist from RUDN University found out that the resources of organic phosphorus in the soils of the Tibetan Plateau could be depleted because of global warming.
Iron is to blame for carbon dioxide emissions from soil, says a soil scientists from RUDN
Iron minerals and bacteria can be the main agents of carbon dioxide emissions from the soil.
Heavy metals make soil enzymes 3 times weaker, says a soil scientist from RUDN University
Heavy metals suppress enzyme activity in the soil by 3-3.5 times and have especially prominent effect on the enzymes that support carbon and sulfur circulation.
A continuous simulation of Holocene effective moisture change in East and Central Asia
Based on a transient climate evolution model, a lake energy balance model and a lake water balance model, the effective moisture change during the Holocene in East and Central Asia is continuously and quantitatively traced by constructing a virtual lake system.
Tracking the tinderbox: Stanford scientists map wildfire fuel moisture across western US
Researchers have developed a deep-learning model that maps fuel moisture levels in fine detail across 12 western states, opening a door for better fire predictions.
Release of a new soil moisture product (2002-2011) for mainland China
A gridded soil moisture product for mainland China from 2002 to 2011 was released in a recent paper in 'Science China Earth Sciences'.
El Niño-linked decreases in soil moisture could trigger massive tropical-plant die offs
New research has found that El Niño events are often associated with droughts in some of the world's more vulnerable tropical regions.
Unsustainable soil erosion in parts of UK
New research demonstrates unsustainable levels of soil erosion in the UK.
Freeze-dried soil is more suitable for studying soil reactive nitrogen gas emissions
Air-dried or oven-dried soils are commonly used in the laboratory to study soil reactive nitrogen gas emissions.
More Soil Moisture News and Soil Moisture Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.