Nav: Home

Can you hear the corn grow? Yes!

November 28, 2016

Washington, D. C. Nov. 28, 2016 -- There's an old farmer's tale that says, "On a quiet night you can hear the corn grow." It may seem funny, but Douglas Cook at New York University and colleagues Roger Elmore and Justin McMechan, at the University of Nebraska, were able to use contact microphones to directly record the sounds of corn growing.

Corn is the leading grain crop in the U.S. with more than 350 million metric tons harvested yearly. But a lack of understanding about the mechanics involved in wind-induced corn stalk failure has hindered further improvements in corn production. Crop scientists have been working on this problem for more than 100 years, albeit with only marginal success.

Now, by applying mechanical engineering tools and techniques, a group of engineers and plant scientists led by Cook are making headway addressing this problem as well as discovering other issues related to plant growth and development.

During the 172nd Meeting of the Acoustical Society of America and the 5th Joint Meeting with Acoustical Society of Japan, being held Nov. 28-Dec. 2, 2016, in Honolulu, Hawaii, Cook will describe his work using acoustic emissions techniques to explore corn stalk growth and breakage.

"Material breakage is a lot like a microscopic earthquake: the sudden release of internal stresses sends sound waves radiating in every direction," Cook explained. "We're using special sensors called piezoelectric contact microphones to monitor the sounds emitted by corn stalks just before failure. This helps us understand the failure process more clearly."

So what does it sound like? "Surprisingly, it sounds remarkably similar to the sounds made when corn breaks," Cook said. "We now think that plant growth involves millions of tiny breakage events, and that these breakage events trigger the plant to rush to 'repair' the broken regions. By continuously breaking and repairing, the plant is able to grow taller and taller."

While the researchers haven't yet determined whether this is true for all plants, Cook suggested that it may be a mechanism similar to that involved in muscle development: Lifting weights imparts tiny micro-tears in the muscle and, as these are repaired, the muscle is strengthened.

This intriguing finding is the result of the fusion of two seemingly unrelated disciplines: plant science and mechanical engineering.

"Many crops are lost each year due to wind damage," Cook said. "Engineers know a lot about how to prevent structural failure, and by using natural breeding techniques plant scientists can improve virtually any feature of the plant that they can measure. So you can imagine that a great deal of progress in plant structural integrity can be achieved by these two disciplines working together."

In terms of applications, "this is a very young field of research, so most of our work is still quite fundamental in nature," Cook said. "We're learning about plant growth and breakage, which could be useful to breeders when developing optimally designed plants."

For example, they've learned that the leaves of corn plants actually provide the majority of structural support during periods of rapid growth. That's quite amazing according to Cook -- and not a role a leaf is typically expected to play. So it should help plant scientists start developing new varieties with tougher leaves that are less susceptible to failure during the growth phase.

Cook's background is in human biomechanics, so he and colleagues are currently using computerized tomography (CT) technology to obtain 3-D images of plants.

"We also plan to use magnetic resonance imaging (MRI) technology to visualize corn growth and development," Cook added. "We'd like to learn more about stalk failure -- with a goal of identifying the 'weakest link' within the stalk failure process. Once it's identified, plant scientists can try to improve stalk strength and resilience."
-end-
Presentation 1pSA17, "You really can hear the corn grow! Acoustic emissions in the growth and breakage of maize," by Douglas Cook is at 5:15 p.m. HAST, Nov. 28, 2016 in Room Sea Pearl.

MORE MEETING INFORMATION

The 172nd Meeting of the Acoustical Society of America

The meeting is being held Nov. 28-Dec. 2, 2016 in Honolulu, Hawaii.

USEFUL LINKSMain meeting website: http://acousticalsociety.org/content/5th-joint-meeting-acoustical-society-america-and-acoustical-society-japan

Technical program: http://acousticalsociety.org/asa2016fall.abstractcentral.com/planner.jsp

Meeting/Hotel site: http://acousticalsociety.org/content/5th-joint-meeting-acoustical-society-america-and-acoustical-society-japan#hotel

Press Room: http://acoustics.org/world-wide-press-room/

WORLD WIDE PRESS ROOM

In the coming weeks, ASA's World Wide Press Room will be updated with additional tips on dozens of newsworthy stories and with lay-language papers, which are 300-1200 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio, and video. You can visit the site during the meeting at: http://acoustics.org/world-wide-press-room/.

PRESS REGISTRATION

We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact Emilie Lorditch, 301-209-3029) who can also help with setting up interviews and obtaining images, sound clips, or background information.

LIVE MEDIA WEBCAST

A press briefing featuring a selection of newsworthy research will be webcast live from the conference on Wednesday, November 30th. Topics and times to be announced.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA

The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world's leading journal on acoustics), Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. For more information about ASA, visit our website at http://www.acousticalsociety.org.

Acoustical Society of America

Related Plant Growth Articles:

Plasma scientists optimize plant growth and yield
At the American Physical Society's Gaseous Electronics Conference, researchers described techniques for delivering plasma to seeds and plants and identifying which plants are most likely to respond.
Antagonistic genes modify rice plant growth
Rice stems lengthen when a newly identified gene activates during flooding.
Plant living with only one leaf reveals fundamental genetics of plant growth
Clinging to the walls of tropical caves is a type of plant with a single leaf that continues to grow larger for as long as the plant survives.
Success in promoting plant growth for biodiesel
Scientists of Waseda University in Japan succeeded in promoting plant growth and increasing seed yield by heterologous expression of protein from Arabidopsis (artificially modified high-speed motor protein) in Camelina sativa, which is expected as a useful plant for biodiesel.
Biologists unravel tangled mystery of plant cell growth
When cells don't divide into proper copies of themselves, living things fail to grow as they should.
The balancing act between plant growth and defense
Kumamoto University researchers have pinpointed the mechanism that regulates the balance between plant growth and defense.
A tiny arctic shrub reveals secrets of plant growth on Svalbard
It's not easy being a tiny willow on the wind-and snow-blasted islands of the Norwegian territory of Svalbard.
How to boost plant biomass: Biologists uncover molecular link between nutrient availability, growth
In a new study published in the Proceedings of the National Academy of Sciences (PNAS), plant genomic scientists at New York University's Center for Genomics & Systems Biology discovered the missing piece in the molecular link between a plant's perception of the nitrogen dose in its environment and the dose-responsive changes in its biomass.
Newly discovered driver of plant cell growth contradicts current theories
The shape and growth of plant cells may not rely on increased fluidic pressure, or turgor, inside the cell as previously believed.
Research identifies possible on/off switch for plant growth
New research from UC Riverside identifies a protein that controls plant growth -- good news for an era in which crops can get crushed by climate change.
More Plant Growth News and Plant Growth Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.