Nav: Home

A change of heart

November 28, 2016

The heart is an amazingly adaptable organ, responding to the needs of the organism throughout life, such as through periods of increased demand by pumping harder, faster, and also growing to accommodate longer-term requirements such as that experienced in pregnancy or as a response to intense exercise.

Some cardiac diseases, such as prolonged high blood pressure and heart attacks, also cause an increase in the heart's muscle mass but dangerously this results in a reduction in cardiac output and can cause an irregular heart rhythm. This growth is called pathological cardiac hypertrophy and eventually leads to heart failure and death. Cardiovascular diseases account for a third of all deaths in the UK.

Now, researchers at the Babraham Institute, UK, University of Leuven, Belgium, University of Oslo, Norway and Karolinska Institute, Sweden, have uncovered the molecular control mechanisms responsible for the different biological changes seen in cardiac hypertrophy induced by pathology compared to exercise. These findings point the way for the design of new treatments for heart disease.

Their research, published in the Journal of Clinical Investigation, compared the differences between hypertrophic heart growth in rats as a result of exercise - which is beneficial - and heart growth induced by pathology - in this case, increased load. Specifically, they compared epigenetic marks responsible for locking cells in their final developed state - important for preventing cells from switching to a less differentiated state. Notably for their analysis, the researchers employed a powerful cell sorting technique to allow them to study pure populations of heart muscle cells (cardiomyocytes) rather than a mix of all cell types in the heart - which, due to an alteration in composition during disease, would confound analysis.

They found a mechanism explaining how, in the case of pathological cardiac hypertrophy, cardiomyocytes lose their adult cellular state and regress back towards their foetal form, switching on genes that were originally expressed as the heart develops in the embryo and usually permanently switched off after birth.

Professor Wolf Reik, Head of the Epigenetics Programme at the Babraham Institute, said: "We found that a very important repressive methylation mark is lost by cells in cardiac hypertrophy. The function of this mark is to lock adult cardiomyocytes in their adult state. The loss of the mark leads to inappropriate gene expression as shown by the re-expression of genes usually only seen late in embryo development."

The research also analysed human cardiomyocytes and importantly the same molecular changes were seen, demonstrating that the same epigenetic factors underlie cardiac hypertrophy and disease remodelling in humans.

Professor Llewelyn Roderick, former group leader at the Babraham Institute, now Professor in the Department of Cardiovascular Sciences at KU Leuven, commented: "Our research has defined a novel epigenetic-based mechanism which explains the contrasting outcomes of cardiac remodelling caused by exercise and pathology. By identifying the epigenetic determinants and the responsible epigenetic enzymes controlling these different forms of cardiac myocyte hypertrophy, as well as how the epigenetic modifiers are themselves regulated by micoRNAs, we provide a potential strategy for epigenetic therapy for adverse cardiac remodelling. This work highlights the value of collaborative research to allow analysis from physiology to molecule and back again."
-end-
This work was funded by the BBSRC which provides strategic support to the Babraham Institute, The Royal Society and an Odysseus award from the Research Foundation Flanders FWO to support the aspects of this work undertaken at the Babraham Institute. The collaborative work at the University of Oslo was supported by the KG Jebsen Cardiac Research Center and the Center for Heart Failure Research of the University of Oslo and by the Anders Jahres Fund for the Promotion of Science. At the Karolinska Institute, the work was supported by the Swedish Research Council, the Ragnar Söderberg Foundation, the Jeansson Foundations, and the Åke Wibergs foundation.

Babraham Institute

Related Epigenetic Articles:

Epigenetic changes precede onset of diabetes
Epigenetic* changes in the islets of Langerhans of the pancreas can be detected in patients several years before the diagnosis of type 2 diabetes.
New insights into epigenetic modifications
Scientists at the European Molecular Biology Laboratory in Rome, in collaboration with Tim Bestor at Columbia University in New York and John Edwards at Washington University in St.
First epigenetic study in 3D human cancer cells
The researcher Manel Esteller performs the first massive epigenetic characterization in organoids or 3D cancer cultures and makes the data available to the research community to facilitate new findings on tumor development and progression.
Epigenetic inheritance: A silver bullet against climate change?
The rapid pace of climate change threatens all living species.
Epigenetics: Inheritance of epigenetic marks
A study undertaken by an international team led by Ludwig-Maximilians-Universitaet (LMU) in Munich molecular biologist Axel Imhof sheds new light on the mechanisms that control the establishment of epigenetic modifications on newly synthesized histones following cell division.
Epigenetics: Inheritance of epigenetic markers
A study undertaken by an international team led by Ludwig-Maximilians-Universitaet (LMU) in Munich molecular biologist Axel Imhof sheds new light on the mechanisms that control the establishment of epigenetic modifications on newly synthesized histones following cell division.
Scientists create 'epigenetic couch potato' mouse
A study in mice shows for the first time that epigenetics -- the molecular mechanisms that determine which genes are turned on or off -- plays a key role in determining an individual's innate drive to exercise.
Machine learning's next frontier: Epigenetic drug discovery
Scientists at Sanford Burnham Prebys Medical Discovery Institute have developed a machine-learning algorithm that gleans information from microscope images -- allowing for high-throughput epigenetic drug screens that could unlock new treatments for cancer, heart disease, mental illness and more.
Ancient epigenetic changes silence cancer-linked genes
A study in zebrafish indicates that some genes linked to cancers in humans have been strictly regulated throughout evolution.
Rapamycin retards epigenetic ageing of keratinocytes
Age, as we know it, is clearly an inappropriate measurement because it is based purely on the passing of time, irrespective of biological changes in our body.
More Epigenetic News and Epigenetic Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.