Nav: Home

Komodo dragons help researchers understand microbial health in captive animals

November 28, 2016

Humans and Komodo dragons, the largest lizards in the world, could not be more different. In the wild, these four-legged carnivores wander in solitude across islands in Indonesia, consuming large prey like deer and water buffalo. But when placed in a closed environment, Komodo dragons interact with their surroundings much in the same way humans do - at least on the microbial level - and researchers are using this knowledge to help them understand the health of animals in captivity.

Researchers at the University of California San Diego, the University of Colorado-Boulder, the University of Chicago and the U.S. Department of Energy's (DOE's) Argonne National Laboratory, are the first to identify similarities in the way in which Komodo dragons and humans and their pets share microbes within closed environments.

Their findings, published in The American Society of Microbiology's mSystems journal, say that the pattern of microbial exchange is "likely circular in nature," meaning that captive dragons contribute microbes to their environment, and reacquire these same microbes from their environment, repeating this exchange in an ongoing cycle without other external sources of microbial diversity.

Researchers noticed this pattern after sampling the microbial communities found in the saliva, skin and feces of 37 Komodo dragons across 12 U.S. zoos as well as the environment of two of the 12 enclosures. They then compared these two sets of data to each other and to past studies of humans and pets. Statistical comparison revealed that, as with humans and pets in their homes, captive Komodo dragons transfer a significant source of bacteria and other microbes to their enclosures.

These findings are helping researchers better understand the relationship between captivity and microbial diversity and health, knowledge that could be key to improving the health of animals in the care of zookeepers, veterinarians and other caretakers.

"Regardless of whether you're in a closed or open environment, there's always a constant exchange of microbes between a host and their environment, and that constant exposure has impacts on health; for example it can lead to changes in a host's immune system that help the host stave off pathogens," said Argonne's Jack Gilbert, an author of the study and the director of The Microbiome Center, a joint Argonne, University of Chicago and Marine Biological Laboratory program.

"The problem is that the degree of exposure becomes limited when you put a host in captivity, and this change has unknown consequences on health," he said, "which is exactly why we're trying to learn more about it."

Evidence from past studies suggests that animals in captivity experience diseases that are associated with or worsened by captivity. Collectively these studies, which have included green sea turtles, polar bears and monkeys, bring weight to the "hygiene hypothesis," which theorizes that reduced exposure to microbes is contributing to the increase in autoimmune and allergic disease occurrence in Westernized nations.

"For some animals there are diseases that affect them but don't affect their wild counterparts, or don't affect their counterparts as severely, so it makes sense that people, as they spend less time outdoors, would be affected in the same ways," said lead author Embriette Hyde, an assistant project scientist and project manager of the American Gut Project.

This study is the largest of its kind on captive Komodo dragons, and the first to investigate the microbial communities in the feces and skin of Komodo dragons. To date, no comparable studies of wild Komodo dragons have been conducted.

Researchers are, however, continuing to explore microbiome interactions using other animal models. Gilbert, along with a separate group of researchers, is studying these interactions in captive dolphins and their environment.

"Since it's quite difficult to track microbial exposure on a daily basis, especially with humans - who move around a lot - we're exploring new animal models to see if we can ask the same questions we would about humans and get answers in more rigorous, controlled ways," Gilbert said.

Through such research, investigators are hoping to identify useful systems to simulate the interactions between an animal and its environment, and find out whether the interactions within a given system are comparable to how humans interact with their environment. Such answers can expand our knowledge of the microbial health of humans and animals alike, and lead to improvements in animal husbandry practices.

This work was funded by the John S. Templeton Foundation, the Alfred P. Sloan Foundation, and Argonne's Laboratory Directed Research and Development program.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

DOE/Argonne National Laboratory

Related Microbes Articles:

A new look at deep-sea microbes
Microbes found deeper in the ocean are believed to have slow population turnover rates and low amounts of available energy.
Microbes might manage your cholesterol
Researchers discover a link between human blood cholesterol levels and a gene in the microbiome that could one day help people manage their cholesterol through diet, probiotics, or entirely new types of treatment.
Can your gut microbes tell you how old you really are?
Harvard longevity researchers in collaboration with Insilico Medicine develop the first AI-powered microbiomic aging clock
What can be learned from the microbes on a turtle's shell?
Research published in the journal Microbiology has found that a unique type of algae, usually only seen on the shells of turtles, affects the surrounding microbial communities.
Life, liberty -- and access to microbes?
Poverty increases the risk for numerous diseases by limiting people's access to healthy food, environments and stress-free conditions.
Rye is healthy, thanks to an interplay of microbes
Eating rye comes with a variety of health benefits. A new study from the University of Eastern Finland now shows that both lactic acid bacteria and gut bacteria contribute to the health benefits of rye.
Gut microbes may affect the course of ALS
Researchers isolated a molecule that may be under-produced in the guts of patients.
Gut microbes associated with temperament traits in children
Scientists in the FinnBrain research project of the University of Turku discovered that the gut microbes of a 2.5-month-old infant are associated with the temperament traits manifested at six months of age.
Gut microbes eat our medication
Researchers have discovered one of the first concrete examples of how the microbiome can interfere with a drug's intended path through the body.
Microbes can grow on nitric oxide
Nitric oxide (NO) is a central molecule of the global nitrogen cycle.
More Microbes News and Microbes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.