Nav: Home

Secret phenotypes: Disease devils in invisible details

November 28, 2016

When a microscopic lab worm grows an eye-popping oddity, scientists locate the mutated gene that caused it. It's truly interesting. Yet, more important findings, medically relevant ones, may be hiding in traits invisible to the eye, even with the best microscope.

Researchers at the Georgia Institute of Technology are exposing these secrets -- micron-sized bumps and grooves -- and the intricate web of gene mutations possibly behind them in high detail. Their computational genetics work using digital optics could prove useful to understanding debilitating disorders.

"When these faint mutations come together, it gives you a ginormous boost in disease risk," said Hang Lu, a professor who applies engineering and data science to the study of neurology.

Neurological disorder: Brain often looks normal

"If you look at psychiatric diseases, anything that is relevant to humans, what you see is not that dramatic," Lu said. "Brains of people who had schizophrenia, bipolar disorder, or autism don't look physically very different from healthy brains. It's not like they're missing a chunk."

Researchers led by Lu at Georgia Tech's School of Chemical and Biomolecular Engineering have developed algorithms and special microscope slide to expose previously unseen neurological nuances and intricate mutations that may be behind them. But their findings could apply as well to computational genetics research pursuing other diseases such as autoimmune disorders.

Lu and former Georgia Tech researcher Adrianna San-Miguel published their latest results on Wednesday, November 23, 2016, in the journal Nature Communications. Their research was funded by the National Institute of General Medicine, and the National Institute on Aging, both agencies of the National Institutes of Health.

Seeing dots: Computers spot subtleties

Lu has replaced the fallible human eye with a proficient computer to pin down faintest phenotypes, the geneticist's term for physical traits based on genes. In the latest experiment, nerve proteins were marked to appear as dots on roundworms' undersides for the computer to scan.

When mutations occur, the dots can change ever so slightly. "To the naked eye, they're just dots on a dark background," Lu said. But the computer sees in them phenotypical shifts.

Roundworm Caenorbabditis elegans, used in the experiment, helps scientists understand what may be going on in humans, because its nerves share strong similarities with ours. Ultimately, Lu wants the insights gained in studying them to lead to localizing genetic biomarkers for diseases in humans.

Synaptic puncta: Glowing green tags

The Georgia Tech scientists narrowed their focus to synapses on a single neuron where it connects to muscles. These "synaptic puncta" were tagged with a glowing green protein to form the dots.

Some mutations did cause big shifts in dot position and size that the naked eye could actually pick up. And traditionally, forward geneticists -- geneticists who follow changes in phenotypes to see if they can find genes that cause them -- have used their eyes and microscopes to pick out such really obvious changes.

But natural limitations on human perception have introduced a bias, Lu said. Her research aims to reduce it to boost the amount of data scientists can gather.

Mutant bias: It looks funny

Here's how the bias roughly works. Sorting mutants from non-mutants in the lab is usually tedious with the tiny worms, and that has consequences for science.

"The normal way of doing it would be to take a little platinum wire and literally go under the microscope, pick up a worm, drug it, mount it on a slide, and then you have to recover it alive, if you think it's interesting," Lu said.

The tedium plus the limited abilities of the human eye lead researchers looking for mutations to single out worms that are markedly odd. Eye-popping phenotypes are namely likely to be caused by genotypic changes, i.e. mutations, so finding a clear phenotype is likely to lead to a successful research outcome.

Stochasticity: Not a mutant

As a result, researchers might overlook subtle samples. In addition, amassing enough of them to determine important nuances may prove too difficult to do, and quirks can get in the way, too. For example, a single weird-looking worm might not be a mutant at all.

"You can always find a 'wildtype' (basically normal worm) that looks nothing at all like a wildtype," Lu said. "It's just a crazy wildtype. Genotypically, it looks like everybody else, but phenotypically it's so different."

Why? Because nature can be stochastic - sort of random -- and mess up an individual worm, even when there's no mutated gene.

Phenospace: A world revealed

Looks can deceive the eye, but they're less likely to fool a high-resolution camera connected to a computer and an algorithm that statistically examines faint variations in order to sort mutants from non-mutants.

Lu's technique works via a transparent slide with tiny tubes that suck in one worm at a time under the computer's microscope. "Then we freeze the worm for a moment, so we can take its picture," Lu said. "Then it unfreezes, and it's totally okay."

There's a fork in the tube holding the worm. If the algorithm detects a mutant based on its synaptic puncta pattern in the image - even if this is not visible to the eye - the worm gets sucked down the first path for further study. If it isn't a mutant, it gets sucked down the second path.

In the latest experiment, the algorithm analyzed phenotypic variations in the synaptic puncta of large worm populations. Parallel to that, the worms' genomes were analyzed to determine which phenotypical differences may be connected to mutated genes.

Then the researchers mapped out genotypes in relation to the differences in phenotypes they underpinned. What was so nuanced before that it was virtually invisible, turned out to be a large, filigree web.

Silent affliction: Poor little worm

Then there was a particularly lucky find that made for a good metaphor for the study and its potential to advance research. The scientists stumbled upon a very subtle allele - a variation of a gene caused by mutation.

The worms that had the allele were real mutants, but no one would have guessed it, because to the eye, they were completely neat and normal. They even behaved normally at first glance, and the researchers thought the computer may have sorted them out as mutants by mistake -- until a hitch turned up.

"After they swam for about 40 minutes, they got really, really weak and couldn't swim well anymore," Lu said. The allele seemed to be associated with some kind of neurological disorder.

"Seen as a metaphor, this is an example of how you might identify something that is relevant to a disease but incredibly subtle," she said, "and you would never have found it using eyes and a microscope."
The research paper was coauthored by Matthew M. Crane, Yuehui Zhao, and Patrick McGrath of Georgia Tech, and Peri Kurshan and Kang Shen of Stanford University. The research was funded by grants from the National Institutes of Health (numbers R01GM088333 and K99AG046911) Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the sponsoring agency.

Georgia Institute of Technology

Related Microscope Articles:

Microscope lens inspired by lighthouse
Custom-fabricated lenses make it easy to attach high-tech microscopes directly to cell incubators.
Print your own laboratory-grade microscope for US$18
For the first time, labs around the world can 3D print their own precision microscopes, thanks to an open-source design created at Bath.
Novel high-speed microscope captures brain neuroactivities
A research team led by Dr. Kevin Tsia from the University of Hong Kong (HKU); and Professor Ji Na, from the University of California, Berkeley (UC Berkeley) has successfully recorded the millisecond electrical signals in the neurons of an alert mouse with their super high-speed microscope - two-photon fluorescence microscope.
Graphene forms under microscope's eye
Scientists record the formation of foamy laser-induced graphene made with a small laser mounted to a scanning electron microscope.
Hybrid microscope could bring digital biopsy to the clinic
By adding infrared capability to the ubiquitous, standard optical microscope, researchers at the University of Illinois at Urbana-Champaign hope to bring cancer diagnosis into the digital era.
An ultrafast microscope for the quantum world
Processes taking place inside tiny electronic components or in molecules can now be filmed at a resolution of a few hundred attoseconds and down to the individual atom.
SLAP microscope smashes speed records
A new 2-photon microscope captures videos of the brain faster than ever, revealing voltage changes and neurotransmitter release.
New 3D microscope visualises fast biological processes better than ever
Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg have combined their expertise to develop a new type of microscope.
Use a microscope as a shovel? UConn researchers dig it
Using a familiar tool in a way it was never intended to be used opens up a whole new method to explore materials, report UConn researchers.
New method gives microscope a boost in resolution
Scientists at the University of Würzburg have been able to boost current super-resolution microscopy by a novel tweak.
More Microscope News and Microscope Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.