Nav: Home

Gene discovered to cause rare, severe neurological disease

November 28, 2016

Researchers have linked a debilitating neurological disease in children to mutations in a gene that regulates neuronal development through control of protein movement within neuronal cells.

The scientists from the Montreal Neurological Institute and Hospital at McGill University, led by Peter McPherson, along with collaborators in Saudi Arabia, Jordan, Germany, and at SickKids Hospital and the University of Toronto, have discovered that a severe form of epileptic encephalopathy is caused by recessive loss-of-function mutations in the gene DENND5A. Their findings were published in the American Journal of Human Genetics on Nov. 17.

Epileptic encephalopathy is a rare but devastating sub-form of epilepsy that results in severe mental and physical disabilities in children from birth. It is often caused by improper development of the brain. Individuals with epileptic encephalopathy caused by mutations in DENND5A present with serious anomalies in brain structure along with calcifications in the brain and altered facial features.

Researchers performed whole exome sequencing on three children with epileptic encephalopathy from two families, one from Saudi Arabia and another from Jordan. Both families were consanguineous, meaning the parents were related to each other. This greatly increases the chance that rare mutations that are recessive and that cause no harm to the parents are expressed in the children. The whole exome sequencing, along with extensive and complex genetic analysis, revealed that recessive mutations in DENND5A were responsible for the disease, with the Saudi family and the Jordanian family having different mutations but in the same DENND5A gene. They found that mutations in DENND5A lead to a lack of the DENND5A protein, resulting in underdevelopment of the central nervous system. The protein expressed from the DENND5A gene is present at highest levels in the nervous system especially while the brain is developing, corroborating the evidence that mutations in the gene cause epileptic encephalopathy.

The researchers discovered that the DENND5A protein controls the movement of receptors for key developmental factors called neurotrophins. Disruption of DENND5A function leads to altered levels of these receptors, which could explain why loss of DENND5A leads to the severe neurological developmental defects in the patients.

Epilepsy affects approximately three per cent of the world population, and epileptic encephalopathy is a rare sub-form of the disease. It is difficult to say how many children with epileptic encephalopathy have the DENND5A mutations, but now that the gene has been identified as a cause, researchers around the world can begin to test patients for mutations in this gene.

This finding also improves our understanding of neuronal development. The observation that loss-of-function mutations in DENND5A causes epileptic encephalopathy suggests that DENND5A protein controls membrane trafficking pathways critical for normal neuronal development and strengthens the argument that protein trafficking processes in cells are critical for normal neuronal development and function.

"Our study demonstrates the importance of membrane trafficking in neuronal development and it provides a new pathophysiological mechanism for this disease type. This will allow physicians around the world to test if mutations in DENND5A are causing the disease in their patients, and also to provide genetic counselling for affected families," says Dr. Chanshuai Han, the lead author on the study.
-end-
This research was funded with the help of the Canadian Institutes for Health Research, the German Academic Exchange Service, the Ontario Brain Institute, Genome Canada, and the Fonds de recherché Quebec, Santé.

Peter McPherson, the senior author on the study, is a James McGill Professor and a Fellow of the Royal Society of Canada.

McGill University

Related Brain Articles:

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.
Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.