RIT professor wins grants from the Moore Foundation

November 28, 2016

Rochester Institute of Technology professor Moumita Das has won seed funding for cutting-edge research that explores mitochondrial DNA and intercellular cargo transport.

Das, an assistant professor in RIT's School of Physics and Astronomy, is a Scialog Fellow on two research teams supported by the Gordon and Betty Moore Foundation. Last April, the Moore Foundation, Research Corporation, and Simons Foundation sponsored the conference Scialog: Molecules Come to Life, which brought together approximately 50 young researchers who work at the intersection of biology and the physical sciences. The Scialog fellowship program encourages collaboration among theorists and experimentalists who propose research in promising areas considered too risky for traditional funding sources.

The three science philanthropies have awarded seed funding totaling $963,750 to six teams of 15 scientists. Das won a combined $112,000 in two awards, for her work on teams investigating "Heteroplasmy: Population dynamics of mitochondria in mammalian cells" with Daniel Needleman from Harvard University and Douglas Weibel from University of Wisconsin, Madison, and "Commoditizing advanced molecular imaging techniques" with Ibrahim Cissé from Massachusetts Institute of Technology; Megan Valentine from University of California, Santa Barbra; and Ali Yanik from University of California, Santa Cruz.

Das is a theoretical physicist who works in the field of biophysics. She is conducting computational modeling and analytical calculations to support hypotheses and predictions for both projects.

The heteroplasmy research is an emergent topic that looks at population dynamics of mitochondria in mammalian cells. Mitochondria, the powerhouse of each cell, controls energy production, initiates programmed cell death, and participates in cell signaling.

Mitochondria have their own DNA distinct from nuclear DNA. All organisms are thought to have low levels of variation in mitochondrial DNA. Changes in mitochondrial DNA are thought to be connected to a range of human health conditions, including epilepsy, heart failure, Parkinson's disease, diabetes and multiple sclerosis, Das said.

"We are studying the population dynamics of healthy and unhealthy mitochondria to see how that might control the functioning of the cell," she said. "Understanding how harmful changes in mitochondrial DNA accumulate over time and under different selection pressures can have a profound impact on our understanding of cell biology and the origins of some human diseases."

Das' second project involves molecular imaging of intercellular transport. The proper functioning of cells depends on molecular motors to carry cargo, such as organelles and vesicles, inside cells, she said. Her study of the process will support the design of a new type of imaging technique.

RIT undergraduate Kevin Ching and post-doctoral researcher Subravat Dey are working with Das to develop models and computer simulations of "molecular motors transporting cargos in crowded cellular environments." RIT undergraduate Kellianne Kornick is working with Das on the mathematical modeling of mitochondrial DNA. Ching and Kornick, both physics majors, will give talks about their research at the American Physical Society meeting in New Orleans in March.

Das and her Scialog teams will present their initial results at the next Scialog: Molecules Come to Life conference April 27-30 in Tucson, Ariz.
-end-


Rochester Institute of Technology

Related Mitochondria Articles from Brightsurf:

Researchers improve neuronal reprogramming by manipulating mitochondria
Researchers at Helmholtz Zentrum M√ľnchen and Ludwig Maximilians University Munich (LMU) have identified a hurdle towards an efficient conversion: the cell metabolism.

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.

'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.

A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.

Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.

First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.

Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.

Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.

Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.

Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.

Read More: Mitochondria News and Mitochondria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.