Nav: Home

RIT professor wins grants from the Moore Foundation

November 28, 2016

Rochester Institute of Technology professor Moumita Das has won seed funding for cutting-edge research that explores mitochondrial DNA and intercellular cargo transport.

Das, an assistant professor in RIT's School of Physics and Astronomy, is a Scialog Fellow on two research teams supported by the Gordon and Betty Moore Foundation. Last April, the Moore Foundation, Research Corporation, and Simons Foundation sponsored the conference Scialog: Molecules Come to Life, which brought together approximately 50 young researchers who work at the intersection of biology and the physical sciences. The Scialog fellowship program encourages collaboration among theorists and experimentalists who propose research in promising areas considered too risky for traditional funding sources.

The three science philanthropies have awarded seed funding totaling $963,750 to six teams of 15 scientists. Das won a combined $112,000 in two awards, for her work on teams investigating "Heteroplasmy: Population dynamics of mitochondria in mammalian cells" with Daniel Needleman from Harvard University and Douglas Weibel from University of Wisconsin, Madison, and "Commoditizing advanced molecular imaging techniques" with Ibrahim Cissé from Massachusetts Institute of Technology; Megan Valentine from University of California, Santa Barbra; and Ali Yanik from University of California, Santa Cruz.

Das is a theoretical physicist who works in the field of biophysics. She is conducting computational modeling and analytical calculations to support hypotheses and predictions for both projects.

The heteroplasmy research is an emergent topic that looks at population dynamics of mitochondria in mammalian cells. Mitochondria, the powerhouse of each cell, controls energy production, initiates programmed cell death, and participates in cell signaling.

Mitochondria have their own DNA distinct from nuclear DNA. All organisms are thought to have low levels of variation in mitochondrial DNA. Changes in mitochondrial DNA are thought to be connected to a range of human health conditions, including epilepsy, heart failure, Parkinson's disease, diabetes and multiple sclerosis, Das said.

"We are studying the population dynamics of healthy and unhealthy mitochondria to see how that might control the functioning of the cell," she said. "Understanding how harmful changes in mitochondrial DNA accumulate over time and under different selection pressures can have a profound impact on our understanding of cell biology and the origins of some human diseases."

Das' second project involves molecular imaging of intercellular transport. The proper functioning of cells depends on molecular motors to carry cargo, such as organelles and vesicles, inside cells, she said. Her study of the process will support the design of a new type of imaging technique.

RIT undergraduate Kevin Ching and post-doctoral researcher Subravat Dey are working with Das to develop models and computer simulations of "molecular motors transporting cargos in crowded cellular environments." RIT undergraduate Kellianne Kornick is working with Das on the mathematical modeling of mitochondrial DNA. Ching and Kornick, both physics majors, will give talks about their research at the American Physical Society meeting in New Orleans in March.

Das and her Scialog teams will present their initial results at the next Scialog: Molecules Come to Life conference April 27-30 in Tucson, Ariz.

Rochester Institute of Technology

Related Mitochondria Articles:

Inside mitochondria and their fascinating genome
EPFL scientists have observed -- for the first time in living cells -- the way mitochondria distribute their transcriptome throughout the cell, and it involves RNA granules that turn out to be highly fluid.
'Cheater mitochondria' may profit from cellular stress coping mechanisms
Cheating mitochondria may take advantage of cellular mechanisms for coping with food scarcity in a simple worm to persist, even though this can reduce the worm's wellbeing.
A ribosome odyssey in mitochondria
The ciliate mitoribosome structure provides new insights into the diversity of translation and its evolution.
Fireflies shed light on the function of mitochondria
By making mice bioluminescent, EPFL scientists have found a way to monitor the activity of mitochondria in living organisms.
First successful delivery of mitochondria to liver cells in animals
This experiment marks the first time researchers have ever successfully introduced mitochondria into specific cells in living animals.
Lack of mitochondria causes severe disease in children
Researchers at Karolinska Institutet in Sweden have discovered that excessive degradation of the power plants of our cells plays an important role in the onset of mitochondrial disease in children.
Unexpected insights into the dynamic structure of mitochondria
As power plants and energy stores, mitochondria are essential components of almost all cells in plants, fungi and animals.
Mitochondria are the 'canary in the coal mine' for cellular stress
Mitochondria, tiny structures present in most cells, are known for their energy-generating machinery.
Master regulator in mitochondria is critical for muscle function and repair
New study identifies how loss of mitochondrial protein MICU1 disrupts calcium balance and causes muscle atrophy and weakness.
Oxygen deficiency rewires mitochondria
Researchers slow the growth of pancreatic tumor cells.
More Mitochondria News and Mitochondria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.