Nav: Home

Stem cells police themselves to reduce scarring, Stanford study finds

November 28, 2016

Treating mice with a compound that increases the expression of an inactive protein helped them heal from injury with less scarring, according to a study by researchers at the Stanford University School of Medicine.

The researchers are hopeful that their findings could one day be used to help keep muscles supple during normal aging and to treat people with diseases like muscular dystrophy.

"Fibrosis occurs in many degenerative diseases and also in normal aging," said Thomas Rando, MD, PhD, a professor of neurology and neurological sciences. "It negatively impacts muscle regeneration by altering the stem cell niche and inhibiting the stem cell function. In addition, as more scarring occurs, muscles become stiff and can't contract and relax smoothly."

Rando, who is the director of Stanford's Glenn Center for the Biology of Aging, is the senior author of the study, which will be published online Nov. 28 in Nature. Former graduate student Alisa Mueller, MD, PhD, is the lead author.

Self-policing stem cells

The researchers discovered that stem cells embedded in muscle fibers do some fancy gene-expression footwork in order to respond appropriately to injury, disease or aging. In particular, the cells toggle between producing a full-length, active version of a protein that responds to external signals to divide and a shorter, inactive version of the same protein that attenuates the growth signal and prevents an overly enthusiastic response that can lead to scarring or fibrosis.

The researchers studied a protein called platelet-derived growth factor receptor alpha, or PDGFR alpha, that sits on the surface of muscle-embedded stem cells called fibro-adipogenic progenitors, or FAPs. These stem cells are responsible for generating the connective tissue scaffolding necessary to support muscle development and regeneration.

PDGFR alpha straddles the cell membrane. The portion outside the cell serves as a landing pad for external signals that encourage the FAPs to begin dividing, or proliferating. The interior portion of the protein passes the signal along to other proteins inside the cell to get the ball rolling. Although some proliferation is necessary to repair an injury, an overly enthusiastic response can lead to scarring and fibrosis that inhibits muscle function. So it's imperative the cells strike the right balance in their response.

The researchers found that the cells have devised a novel, unexpected way to police themselves. The cells found a way to generate a shortened version of the protein that is missing the interior portion of its structure. This shortened version hangs out on the cells' membranes and sequesters the growth signals away from the active form of PDGFR. Without the interior part of the protein, the message to grow is stopped in its tracks.

"We've found that the cells actively regulate the production of the inhibitory form of the protein, which is very surprising," said Rando. "If they make less, the degree of fibrosis increases; if they make more, it decreases."

The cells produce the shortened form of the protein by recognizing and using a specific series of nucleotides in the messenger RNA that encodes the instructions to make the PDGFR alpha protein. The nucleotide code tells the cell's messenger RNA-processing machinery to create a shorter-than-normal message. As a result, the protein that is made from that messenger RNA is also truncated.

Artificially increasing, decreasing expression

Mueller, Rando and their colleagues used a type of small molecule called a vivo-morpholino that can bind and block access to small sections of messenger RNA to artificially increase or decrease expression of the inhibitory version of the PDGFR alpha protein. They found that increasing the amounts of the inhibitory version allowed both young and old mice to heal from injury with less fibrosis and scarring. Conversely, decreasing the amount increased the severity of fibrosis.

"We'd like to test this approach in a mouse model of muscular dystrophy next," said Rando. "Interestingly, the vivo-morpholino we used is similar to a small oligonucleotide therapy currently being tested in clinical trials to stimulate the production of proteins missing in patients with Duchenne muscular dystrophy. Perhaps we could also use this approach to reduce fibrosis in this disease."
-end-
Other Stanford co-authors of the study are postdoctoral scholar Cindy van Velthoven, PhD; former undergraduate student Kathryn Fukumoto; and former postdoctoral scholar Tom Cheung, PhD.

The research was supported by the Glenn Foundation for Medical Research, the National Institutes of Health (grants AG043235, AG036695, AG23806, AR062185 and AG47820), the California Institute for Regenerative Medicine and the Department of Veterans Affairs.

Stanford's Department of Neurology also supported the work.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://med.stanford.edu.

Print media contact: Krista Conger at (650) 725-5371 (kristac@stanford.edu)

Broadcast media contact: Margarita Gallardo at (650) 723-7897 (mjgallardo@stanford.edu)

Stanford University Medical Center

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.