Nav: Home

UT Austin engineers develop first-ever capsule to treat hemophilia

November 28, 2016

In the near future, hemophiliacs could be able to treat their disease by simply swallowing a capsule.

Thanks to a breakthrough led by researchers in the Cockrell School of Engineering at The University of Texas at Austin, treatment for hemophilia can now be administered via a biodegradable system, a capsule, giving people affected by the hereditary bleeding disorder hope for a less expensive, less painful treatment option than conventional injections or infusions.

The researchers designed the oral delivery system, which contains micro- and nanoparticles, to carry a protein therapy that treats hemophilia B. There are approximately 400,000 people worldwide living with either hemophilia A or hemophilia B, both caused by a missing protein in their blood. Hemophilia B is caused by a missing or defective factor IX, a clotting protein. The researchers describe their system in the Nov. 30 issue of the International Journal of Pharmaceutics.

The bleeding disorder affects people throughout the world, but global accessibility to therapy is limited by cost, the need for trained medical personnel and possible complications associated with needle-based drug administration. Thousands of people endure multiple injections weekly to keep symptoms, such as excessive bleeding and pain in the joints, at bay and prevent future joint disease.

"While an oral delivery platform will be beneficial to all hemophilia B patients, patients in developing countries will benefit the most," said Sarena Horava, the study's lead author who is a recent Ph.D. graduate from the Cockrell School's McKetta Department of Chemical Engineering and a National Science Foundation graduate research fellow. "In many developing countries, the median life expectancy for hemophilia patients is 11 years due to the lack of access to treatment, but our new oral delivery of factor IX can now overcome these issues and improve the worldwide use of this therapy."

Horava, who now works at Triton Systems, collaborated with co-author and co-inventor Nicholas A. Peppas, the director of UT Austin's Institute for Biomaterials, Drug Delivery and Regenerative Medicine and a Cockrell School professor who also holds appointments in the Dell Medical School and School of Pharmacy. Katie J. Moy, an undergraduate student in the Cockrell School's Department of Biomedical Engineering, is also a co-author on the study.

Peppas said that alleviating the burden of injections for children was the impetus for the research project, which started about nine years ago.

"My most pressing concern was the treatment of younger patients who suffer from hemophilia and who have to apply injections every two days," Peppas said. "The original idea of the project was conceived when Dr. Lisa Brannon-Peppas, who at the time was a biomedical engineering faculty member, discussed with me the side effects of the disease and the psychological impact it has on mothers."

Peppas and Horava's work has been patented and builds upon their published and patented system for the oral delivery of human factor IX (hFIX), a prophylactic treatment for hemophilia B patients. That system was successful in transporting hFIX, and it was able to deliver adequate levels of the drug to the target site in the body. The biggest challenge in delivering hFIX is that it is extremely delicate and unstable in the body's various pH environments. The researchers' new and improved system is designed to capitalize on the body's pH and changes in enzymes inside the gastrointestinal tract for a smooth delivery.

As it moves through the body, the particle-containing capsule resists the major gastric enzyme to remain intact while in the stomach, providing protection for the encapsulated drug. In the small intestine, the capsule begins to swell with the increase in pH and is then degraded by the major intestinal enzyme, slowly releasing the drug over time.

"Based on the current capabilities of this system, approximately two capsules would be equivalent to one injection," Horava said. "However, we anticipate that we will make further improvements to the delivery capacity of the oral delivery system and therefore decrease the capsule amount."

The researchers plan to further test this system before clinical trials. They are working with the UT Austin Office of Technology Commercialization to further advance the technology for clinical use. The researchers indicate that their ultimate goal is to position this technology for Food and Drug Administration approval.
-end-
This research received funding from the National Institutes of Health, the Fletcher S. Pratt Chair, the National Science Foundation Graduate Research Fellowship Program, the P.E.O. Scholar Award and the UT Austin Undergraduate Research Fellowship.

University of Texas at Austin

Related Engineering Articles:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity
Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.
COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.
Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.