# Key component for quantum computing invented

November 28, 2017A team at the University of Sydney and Microsoft, in collaboration with Stanford University in the US, has miniaturised a component that is essential for the scale-up of quantum computing. The work constitutes the first practical application of a new phase of matter, first discovered in 2006, the so-called topological insulators.

Beyond the familiar phases of matter - solid, liquid, or gas - topological insulators are materials that operate as insulators in the bulk of their structures but have surfaces that act as conductors. Manipulation of these materials provide a pathway to construct the circuitry needed for the interaction between quantum and classical systems, vital for building a practical quantum computer.

Theoretical work underpinning the discovery of this new phase of matter was awarded the 2016 Nobel Prize in Physics.

The Sydney team's component, coined a microwave circulator, acts like a traffic roundabout, ensuring that electrical signals only propagate in one direction, clockwise or anti-clockwise, as required. Similar devices are found in mobile phone base-stations and radar systems, and will be required in large quantities in the construction of quantum computers. A major limitation, until now, is that typical circulators are bulky objects the size of your hand.

This invention, reported by the Sydney team today in the journal

*Nature Communications*, represents the miniaturisation of the common circulator device by a factor of 1000. This has been done by exploiting the properties of topological insulators to slow the speed of light in the material. This minaturisation paves the way for many circulators to be integrated on a chip and manufactured in the large quantities that will be needed to build quantum computers.

The leader of the Sydney team, Professor David Reilly, explained that the work to scale-up quantum computing is driving breakthroughs in related areas of electronics and nanoscience.

"It is not just about qubits, the fundamental building blocks for quantum machines. Building a large-scale quantum computer will also need a revolution in classical computing and device engineering," Professor Reilly said.

"Even if we had millions of qubits today, it is not clear that we have the classical technology to control them. Realising a scaled-up quantum computer will require the invention of new devices and techniques at the quantum-classical interface."

Lead author of the paper and PhD candidate Alice Mahoney said: "Such compact circulators could be implemented in a variety of quantum hardware platforms, irrespective of the particular quantum system used."

A practical quantum computer is still some years away. Scientists expect to be able to carry out currently unsolveable computations with quantum computers that will have applications in fields such as chemistry and drug design, climate and economic modelling, and cryptography.

-end-

Professor David Reilly is director of the University of Sydney's Microsoft Quantum Laboratory, a multimillion dollar partnership, which is part of a global effort by Microsoft to build the world's first practical quantum computer. The partnership is housed in the Sydney Nanoscience Hub, the flagship building of the University of Sydney Nano Institute.University of Sydney

## Related Quantum Computing Articles from Brightsurf:

Bringing a power tool from math into quantum computing

The Fourier transform is a mathematical operation essential to virtually all fields of physics and engineering.

New detector breakthrough pushes boundaries of quantum computing

A new paper published in Nature shows potential for graphene bolometers to become a game-changer for quantum technology

A molecular approach to quantum computing

Molecules in quantum superposition could help in the development of quantum computers.

Cosmic rays may soon stymie quantum computing

Infinitesimally low levels of radiation, such as from incoming cosmic rays, may soon stymie progress in quantum computing.

UVA pioneers study of genetic diseases with quantum computing

Scientists are harnessing the mind-bending potential of quantum computers to help us understand genetic diseases - even before quantum computers are a thing.

New method predicts spin dynamics of materials for quantum computing

Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics.

Speeding-up quantum computing using giant atomic ions

An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

Boson particles discovery provides insights for quantum computing

Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.

In leap for quantum computing, silicon quantum bits establish a long-distance relationship

In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

Diversity may be key to reducing errors in quantum computing

In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

Read More: Quantum Computing News and Quantum Computing Current Events

The Fourier transform is a mathematical operation essential to virtually all fields of physics and engineering.

New detector breakthrough pushes boundaries of quantum computing

A new paper published in Nature shows potential for graphene bolometers to become a game-changer for quantum technology

A molecular approach to quantum computing

Molecules in quantum superposition could help in the development of quantum computers.

Cosmic rays may soon stymie quantum computing

Infinitesimally low levels of radiation, such as from incoming cosmic rays, may soon stymie progress in quantum computing.

UVA pioneers study of genetic diseases with quantum computing

Scientists are harnessing the mind-bending potential of quantum computers to help us understand genetic diseases - even before quantum computers are a thing.

New method predicts spin dynamics of materials for quantum computing

Researchers at UC Santa Cruz have developed a theoretical foundation and new computational tools for predicting a material's spin dynamics, a key property for building solid-state quantum computing platforms and other applications of spintronics.

Speeding-up quantum computing using giant atomic ions

An international team of researchers have found a new way to speed up quantum computing that could pave the way for huge leaps forward in computer processing power.

Boson particles discovery provides insights for quantum computing

Researchers working on a U.S. Army project discovered a key insight for the development of quantum devices and quantum computers.

In leap for quantum computing, silicon quantum bits establish a long-distance relationship

In an important step forward in the quest to build a quantum computer using silicon-based hardware, researchers at Princeton have succeeded in making possible the exchange of information between two qubits located relatively far apart -- about the length of a grain of rice, which is a considerable distance on a computer chip.

Diversity may be key to reducing errors in quantum computing

In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.

Read More: Quantum Computing News and Quantum Computing Current Events

Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.