Quantum systems correct themselves

November 28, 2017

An international team of researchers from Innsbruck, Harvard, Copenhagen and Waterloo put forward a new method to protect quantum information stored in trapped ions.

In their new proposal, the authors use dissipation (i.e. the interaction of a quantum system with its environment) to correct quantum states. Dissipation is typically considered harmful, but as demonstrated by Florentin Reiter and colleagues, it can be tweaked to work in a quantum engineer's favor.

Standard quantum error correction schemes are performed by applying a sequence of gates in a logical quantum circuit and rely on measurements by classical devices. The new dissipative approach does not require a logical circuit and dispenses also with measurements. "The whole error correcting process happens autonomously at the microscopic level, such that quantum systems can correct themselves", said co-author Christine Muschik, of the Department of Theoretical Physics at the University of Innsbruck and the Institute of Quantum Optics and Quantum Information at the Austrian Academy of Sciences.

The new approach has important practical applications for high-precision measurements. "We showed how the new dissipative correction mechanism can be used to enhance the precision for sensing weak magnetic fields", Muschik said. These results open new avenues for improving high-precision sensing schemes with trapped ions and constitute a stepping stone towards the paradigm of self-correcting quantum information processing.

University of Innsbruck

Related Quantum Information Articles from Brightsurf:

Direct visualization of quantum dots reveals shape of quantum wave function
Trapping and controlling electrons in bilayer graphene quantum dots yields a promising platform for quantum information technologies.

Researchers discover a uniquely quantum effect in erasing information
Researchers from Trinity College Dublin have discovered a uniquely quantum effect in erasing information that may have significant implications for the design of quantum computing chips.

Avoiding environmental losses in quantum information systems
New research published in EPJ D has revealed how robust initial states can be prepared in quantum information systems, minimising any unwanted transitions which lead to losses in quantum information.

New technology lets quantum bits hold information for 10,000 times longer than previous record
Quantum bits, or qubits, can hold quantum information much longer now thanks to efforts by an international research team.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Streamlining quantum information transmission
The Internet has deeply changed our ways of living but at the same time introduced serious security and privacy issues.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

AI enables efficiencies in quantum information processing
A new machine learning framework could pave the way for small, mobile quantum networks.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

Future information technologies: 3D quantum spin liquid revealed
Quantum Spin Liquids are candidates for potential use in future information technologies.

Read More: Quantum Information News and Quantum Information Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.