Texas A&M-Galveston team finds cave organisms living off methane gas

November 28, 2017

In a surprising find deep in an underwater cave in Mexico's Yucatan Peninsula, a team of researchers led by a Texas A&M University at Galveston doctoral student have discovered that cave-adapted organisms can exist off of methane gas and the bacteria near it, and it raises the possibility that other life forms are also living this way in similar caves around the world.

David Brankovits, a student from Budapest, Hungary, who led the research for his Ph.D at Texas A&M-Galveston, and fellow researchers from Mexico, The Netherlands, Switzerland, the University of Alaska-Fairbanks and the U.S. Geological Survey, have had their work published in the current issue of Nature Communications.

The team examined flooded cave passages within the Ox Bel Ha cave network in the Yucatan where there is a mix of fresh and salt water. Methane in such caves tends to form naturally from surface vegetation and migrates through the limestone in deep waters of the cave network. They found that the methane gases in the area are an important food source for bacteria and other microbes that form the basis of the entire cave ecosystem.

The microbes consume both the methane in the water and other dissolved organic material produced in the overlying soils and permeable carbonate rock, and they form the basis of a food web that ranges from other tiny organisms to fairly large shrimp.

"Methane is the key - the cave organisms have to live off the methane gas, which caught us by surprise," explains Brankovits.

"In the studied system, cave-adapted organisms exist where there is no sunlight and virtually all food sources are present in dissolved forms. Without the presence of microbes that can utilize methane and other dissolved energy sources, these animals could not live otherwise. Previous studies had shown that food came from vegetation or other materials in the forest that washed into the caves, but we found very little of that type of debris."

Similar coastal cave ecosystems exist around the world. Brankovits says the next step is to do more research in similar cave systems found in the Bahamas, the Dominican Republic and other Caribbean locations.

"There are other dissolved organic materials like natural acids and alcohols, down there that we are just now learning about, and we need to explore them in more detail. The results could be surprising," he notes.

Tom Iliffe, professor of marine biology at Texas A&M-Galveston and one of the most experienced cave divers in the world who was part of the research team, adds, "Providing a model for the basic function of this globally-distributed ecosystem is an important contribution to coastal groundwater ecology and establishes a baseline for evaluating how sea level rise, seaside touristic development and other stressors will impact the viability of these lightless, food-poor systems."
-end-
The study was funded and supported by TAMU-CONACYT program, the U.S. Geological Survey and Moody Gardens Aquarium in Galveston.

Texas A&M University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.