Nav: Home

Blue Brain Project releases first-ever digital 3D brain cell atlas

November 28, 2018

The first digital 3D atlas of every cell in the mouse brain provides neuroscientists with previously unavailable information on major cell types, numbers and positions in all 737 brain regions -- which will potentially accelerate progress in brain science massively. Released by EPFL's Blue Brain Project and published in Frontiers in Computational Neuroscience, the Blue Brain Cell Atlas integrates data from thousands of whole brain tissue stains into a comprehensive, interactive and dynamic online resource that can continuously be updated with new findings. This groundbreaking digital atlas can be used for analyzing and further modeling specific brain areas, and is a major step toward a full simulation of the rodent brain.

"Despite vast numbers of studies over the past century, cell numbers were still only available for 4% of mouse brain regions -- and these estimates often varied by as much as three-fold," says Blue Brain Project Founder and Director, Professor Henry Markram. "The Blue Brain Cell Atlas solves this problem by presenting the best estimates for even the smallest-known region of the mouse brain."

"Knowing the circuit components and how they are arranged is also an essential starting point for modelling the brain - just as demographic data are essential for modelling a country, for example," explains lead author and creator of the Cell Atlas, Csaba Erö.

Previous brain atlases consist of stacks of images of stained brain slices. Some show precise cell positions for the entire brain, while others show particular cell types -- but none turns this valuable data into numbers and positions of all the cells in the brain in the form of a digitally navigable atlas.

This revolutionary step took five years of carefully collecting and integrating thousands of stainings of brain tissue. Erö and colleagues relied mostly on all the imaging data made available from the Allen Institute for Brain Science and combined this with a large number of other anatomical studies to calculate and validate the major types, numbers, and positions of cells in each area of the mouse brain -- including all the regions where cell data was never obtained before.

"Our Cell Atlas is like going from hand-drawn maps to digitized versions of satellite images of cities and geographical features -- allowing us to navigate the brain the way Google Earth allows us to navigate the Earth," says Blue Brain Section Manager, Marc-Oliver Gewaltig. "It's 3D, it's high resolution, it's searchable, it's navigable, it's annotated, it's user-friendly -- and it fills a huge gap in our knowledge of 96% of the mouse's brain regions."

Freely available online, the Blue Brain Cell Atlas allows users to visualize all 737 brain regions and the cells they contain, and to download the region with their numbers and locations. It distinguishes excitatory, inhibitory and some other types of neurons -- as well as major types of non-neuronal cells called glia, which insulate and protect neurons. These data are important for researchers trying to understand the structure and function of different brain regions or for building functional models of specific brain regions.

"It is also a great teaching aid: you can choose to display just the regions of interest and navigate through these down to the scale of individual cells, which are color-coded by the type of their morphology," adds Gewaltig.

The Blue Brain Cell Atlas is also the first brain atlas that is dynamic -- allowing researchers to contribute to and improve the atlas with any new data. "We can now move collaboratively towards the ground truth of what is inside the mouse brain," explains Markram.

"Our message to brain researchers everywhere is: try it, use it, add data to it," conclude the authors.
-end-
Please include a link to the original research article in your reporting: https://www.frontiersin.org/articles/10.3389/fninf.2018.00084/full

For more information, please contact:

Blue Brain Communications - kate.mullins@epfl.ch

Frontiers Communications - matthew.prior@frontiersin.org

About EPFL's Blue Brain Project

The aim of the EPFL's Blue Brain Project, a Swiss brain initiative founded and directed by Professor Henry Markram, is to build accurate, biologically detailed digital reconstructions and simulations of the rodent brain, and ultimately, the human brain. The supercomputer-based reconstructions and simulations built by Blue Brain offer a radically new approach for understanding the multilevel structure and function of the brain. For more information, visit bluebrain.epfl.ch

Contributors and Funding

EPFL's Blue Brain Project would like to thank the Allen Institute for Brain Science (alleninstitute.org) for the large array of publicly available data. This project has received funding from the European Union's Horizon 2020 Framework Programme for Research and Innovation under Grant Agreement No. 604102 (Human Brain Project Ramp-Up Phase) and Grant Agreement No. 720270 (Human Brain Project SGA1). This work was supported by the EPFL Blue Brain Project Fund and the ETH Board Funding to the Blue Brain Project.

About EPFL

EPFL, one of the two Swiss Federal Institutes of Technology, based in Lausanne, is Europe's most cosmopolitan technical university with students, professors and staff from over 120 nations. A dynamic environment, open to Switzerland and the world, EPFL is centered on its three missions: teaching, research and technology transfer. EPFL works together with an extensive network of partners including other universities and institutes of technology, developing and emerging countries, secondary schools and colleges, industry and economy, political circles and the general public, to bring about real impact for society. For more information, visit epfl.ch

About Frontiers

Frontiers is an award-winning Open Science platform and leading Open Access scholarly publisher. Our mission is to make research results openly available to the world, thereby accelerating scientific and technological innovation, societal progress and economic growth. We empower scientists with innovative Open Science solutions that radically improve how science is published, evaluated and disseminated to researchers, innovators and the public. Access to research results and data is open, free and customized through Internet Technology, thereby enabling rapid solutions to the critical challenges we face as humanity. For more information, visit http://www.frontiersin.org and follow @Frontiersin on Twitter.

Frontiers

Related Brain Articles:

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
Is whole-brain radiation still best for brain metastases from small-cell lung cancer?
University of Colorado Cancer Center study compares outcomes of 5,752 small-cell lung cancer patients who received whole-brain radiation therapy (WBRT) with those of 200 patients who received stereotactic radiosurgery (SRS), finding that the median overall survival was actually longer with SRS (10.8 months with SRS versus 7.1 months with WBRT).
Atlas of brain blood vessels provides fresh clues to brain diseases
Even though diseases of the brain vasculature are some of the most common causes of death in the West, knowledge of these blood vessels is limited.
More Brain News and Brain Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.