Nav: Home

Checkmating tumors

November 28, 2018

Chess and cancer research have one thing in common: One must act strategically to defeat the opponent. And that's exactly what scientists at the MDC are doing. They are seeking to selectively make only those cancer cells aggressive that would otherwise evade chemotherapy - and then lure them into a trap.

In chemotherapy, cytostatics - i.e., substances that are halting cell prolifieration - prevent cancer cells from growing and cause them to die. This approach often leads to success but has a number of drawbacks. It has a negative effect on healthy cells, and may also cause significant side effects in some patients. What's more, in the case of very aggressive tumors, some cancer cells usually survive the therapy. "The remaining cancer cells are especially dangerous because they are altered in such a way that physicians often no longer know what type of cancer cells they are dealing with," explains Dr. Gaetano Gargiulo, head of the Molecular Oncology research group at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC). This makes it difficult to choose the right substances for further treatment.

Being prepared for the opponent's next move

In a certain form of non-small cell lung cancer, the chemotherapy frequently results in altered cancer cells that are almost untreatable. Those developing new treatments must keep this possibility in mind. "Like a good chess player, we must think several moves ahead instead of just reacting to the present situation," says Gargiulo. Together with his team and researchers under Professor Maarten van Lohuizen of the Netherlands Cancer Institute in Amsterdam, he has tested how this might work on mice that were injected with cells of a special form of non-small cell lung cancer.

In this form of non-small cell lung cancer, the cancer cells produce large quantities of an enzyme called Ezh2. The enzyme represses a number of tumor suppressor genes, which normally stop cells from multiplying out of control. Agents that inhibit this enzyme and thus reactivate the tumor suppressor genes are currently being tested in clinical studies. "In our mice, this agent initially worked as expected and inhibited the multiplication of tumor cells, thus keeping the cancer in check," says Michela Serresi, the lead author of the publication and team leader associated with Gargiulo's research group.

But the researchers had also expected the agent to lose its effect over time. "Interestingly, there always developed an inflammatory situation that in turn supported tumor growth," says Serresi. The remaining cancer cells thus became even more aggressive as a result of the treatment.

Making cancer cells aggressive - and then moving in for checkmate

This is precisely where the MDC researchers are focusing their efforts. They are intentionally sending the tumor cells down this path - and setting them up for a trap. "Although the cells may be extremely aggressive once they are resistant to the Ezh2 inhibitor, they are dependent on the inflammatory situation," explains Gargiulo. "If we can foresee this development, similar to the way skilled chess players think through the possible moves their opponents might make, and even deliberately force it to occur, we can also selectively combat it." Therefore, in the second step of the therapy, the researchers administered the mice an anti-inflammatory substance - putting the cancer cells in checkmate.

However, it is still a long way to go before patients will see benefits from these new treatment strategies. "If we intentionally make cancer cells more aggressive, we have to know exactly what we're doing," says Gargiulo, adding that, for example, it would be necessary to search for biomarkers that enable clinical scientists to clearly predict in which patients this strategy will actually be effective. "We first have to gather sufficient data and experience in the lab before we can even think about testing this treatment strategy on patients," emphasizes Gargiulo.
-end-
Reference

Michela Serresi et al. (2018): "Ezh2 inhibition in Kras-driven lung cancer amplifies inflammation and associated vulnerabilities." Journal of Experimental Medicine. doi:10.1084/jem.20180801 (manuscript available upon request)

The Max Delbrück Center for Molecular Medicine (MDC)

The Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) was founded in Berlin in 1992. It is named for the German-American physicist Max Delbrück, who was awarded the 1969 Nobel Prize in Physiology and Medicine. The MDC's mission is to study molecular mechanisms in order to understand the origins of disease and thus be able to diagnose, prevent, and fight it better and more effectively. In these efforts the MDC cooperates with the Charité - Universitätsmedizin Berlin and the Berlin Institute of Health (BIH) as well as with national partners such as the German Center for Cardiovascular Research and numerous international research institutions. More than 1,600 staff and guests from nearly 60 countries work at the MDC, just under 1,300 of them in scientific research. The MDC is funded by the German Federal Ministry of Education and Research (90 percent) and the State of Berlin (10 percent), and is a member of the Helmholtz Association of German Research Centers. http://www.mdc-berlin.de

Max Delbrück Center for Molecular Medicine in the Helmholtz Association

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
More Cancer News and Cancer Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab