Nav: Home

New method automatically computes realistic movement with friction from 3D design

November 28, 2018

Simulating any 3D surface or structure--from tree leaves and garments to pages of a book--is a computationally challenging, time-consuming task. While various geometric tools are available to mimic the shape modeling of these surfaces, a new method is making it possible to also compute and enable the physics--movement and distortion--of the surface and does so intuitively and with realistic results.

Researchers from Inria, the French National Institute for computer science and applied mathematics, have developed a novel algorithm that computes the shape of the surface at rest, that is, without any external force, and when this shape is deformed under gravity, contact and friction, it precisely matches the shape the user has designed.

"Imagine you want to create a fancy garment on a 3D character. With our method, you can freely design this garment directly in 3D, around the character. You don't have to care about physics, but just about the shape, including the folds and wrinkles, that you would like to see at the final stage," explains Florence Bertails-Descoubes, scientific supervisor of the work and a researcher at INRIA. "Once you've completed the modeling, our algorithm automatically converts the geometric cloth into a physical one."

Users draw or design any 3D surface utilizing their preferred geometric tools and can then turn to the new computational method to convert the surface into a physical object, and one that may or may not make contact with other surfaces. Bertails-Descoubes collaborated on the work with her PhD students Mickaël Ly and Romain Casati and Inria colleagues Melina Skouras and Laurence Boissieux, and the team will present at SIGGRAPH Asia 2018 in Tokyo 4 December to 7 December. The annual conference features the most respected technical and creative members in the field of computer graphics and interactive techniques, and showcases leading edge research in science, art, gaming and animation, among other sectors.

Many geometric tools exist to perform accurate modeling of shapes with flexibility given to the user. Given the example of modeling clothing around a 3D character, the researchers' method provides a simpler way for the clothing to mimic movement on the animated character, automatically computing for gravity and frictional contact with an external body.

"For instance, if a user draws a 3D skirt on an animated character, our method will automatically shrink the rest shape and tighten it at the waist, to compensate for gravity which 'wants' to pull the item downwards," notes Bertails-Descoubes. The team's method also enables users to change the physical properties of the garment designed, i.e. making it out of linen instead of cotton. In turn, the cloth will behave differently, appearing softer, for instance, for lightweight cotton and will appear to have less friction with the body.

The scientists note that "the major difficulty in this kind of inverse problem stems from the fact that it is highly nonlinear. This complexity is particularly exacerbated by the presence of contact and dry friction, which was never explicitly accounted for in previous studies. It is thus challenging to design a robust algorithm able to find a valid rest shape for a large variety of different scenarios."

The researchers provided several examples in the paper, showcasing their algorithm's performance on 3D animated designs. Included in the paper are two hat examples--noted as 'floppy hat' and 'beret'--which are posed on a human head through contact and friction. Without the researchers' inversion method, the floppy hat sags, completely losing its original style and partly covering the face of the animated character. In contrast, after running the new algorithm, the hat preserves its original style and realistically flip-flops with the movement of the character. The beret example produced similar realistic results after applying the team's method--the beret correctly remained inflated and posed on the head. When 'wind' is applied to the design, the beret slides with the movement but does not fall completely off the head, exemplifying the algorithm's ability to realistically simulate the physics involved.

In future work, the team will focus on making their algorithm work faster and be adapted to the creation of real garment patterns.
-end-


Association for Computing Machinery

Related Algorithm Articles:

Algorithm personalizes which cancer mutations are best targets for immunotherapy
As tumor cells multiply, they often spawn tens of thousands of genetic mutations.
Universal algorithm set to boost microscopes
EPFL scientists have developed an algorithm that can determine whether a super-resolution microscope is operating at maximum resolution based on a single image.
Algorithm designed to map universe, solve mysteries
Cornell University researchers have developed an algorithm designed to visualize models of the universe in order to solve some of physics' greatest mysteries.
Algorithm tells robots where nearby humans are headed
A new tool for predicting a person's movement trajectory may help humans and robots work together in close proximity.
Algorithm to transform investment banking with higher returns
A University of Bath researcher has created an algorithm which aims to remove the elements of chance, bias or emotion from investment banking decisions, a development which has the potential to reduce errors in financial decision making and improve financial returns in global markets.
Algorithm provides customized caffeine strategy for alertness
A web-based caffeine optimization tool successfully designs effective strategies to maximize alertness while avoiding excessive caffeine consumption, according to preliminary results from a new study.
New algorithm optimizes quantum computing problem-solving
Tohoku University researchers have developed an algorithm that enhances the ability of a Canadian-designed quantum computer to more efficiently find the best solution for complicated problems, according to a study published in the journal Scientific Reports.
Machine learning algorithm helps in the search for new drugs
Researchers have designed a machine learning algorithm for drug discovery which has been shown to be twice as efficient as the industry standard, which could accelerate the process of developing new treatments for disease.
Researchers create algorithm to predict PEDV outbreaks
Researchers from North Carolina State University have developed an algorithm that could give pig farms advance notice of porcine epidemic diarrhea virus (PEDV) outbreaks.
New algorithm provides a more detailed look at urban heat islands
Urban areas are warmer than the adjacent undeveloped land, a phenomenon known as the urban heat island effect.
More Algorithm News and Algorithm Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.