Atomic jet -- the first lens for extreme-ultraviolet light developed

November 28, 2018

Scientists from the Max Born Institute (MBI) have developed the first refractive lens that focuses extreme ultraviolet beams. Instead of using a glass lens, which is non-transparent in the extreme-ultraviolet region, the researchers have demonstrated a lens that is formed by a jet of atoms. The results, which provide novel opportunities for the imaging of biological samples on the shortest timescales, were published in Nature.

A tree trunk partly submerged in water appears to be bent. Since hundreds of years people know that this is caused by refraction, i.e. the light changes its direction when traveling from one medium (water) to another (air) at an angle. Refraction is also the underlying physical principle behind lenses which play an indispensable role in everyday life: They are a part of the human eye, they are used as glasses, contact lenses, as camera objectives and for controlling laser beams.

Following the discovery of new regions of the electromagnetic spectrum such as ultraviolet (UV) and X-ray radiation, refractive lenses were developed that are specifically adapted to these spectral regions. Electromagnetic radiation in the extreme-ultraviolet (XUV) region is, however, somewhat special. It occupies the wavelength range between the UV and X-ray domains, but unlike the two latter types of radiation, it can only travel in vacuum or strongly rarefied gases. Nowadays XUV beams are widely used in semiconductor lithography as well as in fundamental research to understand and control the structure and dynamics of matter. They enable the generation of the shortest human made light pulses with attosecond durations (an attosecond is one billionth of a billionth of a second). However, in spite of the large number of XUV sources and applications, no XUV lenses have existed up to now. The reason is that XUV radiation is strongly absorbed by any solid or liquid material and simply cannot pass through conventional lenses.

In order to focus XUV beams, a team of MBI researchers have taken a different approach: They replaced a glass lens with that formed by a jet of atoms of a noble gas, helium (see Fig. 1). This lens benefits from the high transmission of helium in the XUV spectral range and at the same time can be precisely controlled by changing the density of the gas in the jet. This is important in order to tune the focal length and minimize the spot sizes of the focused XUV beams.

In comparison to curved mirrors that are often used to focus XUV radiation, these gaseous refractive lenses have a number of advantages: A 'new' lens is constantly generated through the flow of atoms in the jet, meaning that problems with damages are avoided. Furthermore, a gas lens results in virtually no loss of XUV radiation compared to a typical mirror. "This is a major improvement, because the generation of XUV beams is complex and often very expensive," Dr. Bernd Schuette, MBI scientist and corresponding author of the publication, explains.

In the work the researchers have further demonstrated that an atomic jet can act as a prism breaking the XUV radiation into its constituent spectral components (see Fig. 2). This can be compared to the observation of a rainbow, resulting from the breaking of the Sun light into its spectral colors by water droplets, except that the 'colors' of the XUV light are not visible to a human eye.

The development of the gas-phase lenses and prisms in the XUV region makes it possible to transfer optical techniques that are based on refraction and that are widely used in the visible and infrared part of the electromagnetic spectrum, to the XUV domain. Gas lenses could e.g. be exploited to develop an XUV microscope or to focus XUV beams to nanometer spot sizes. This may be applied in the future, for instance, to observe structural changes of biomolecules on the shortest timescales.
-end-


Forschungsverbund Berlin

Related Radiation Articles from Brightsurf:

Sheer protection from electromagnetic radiation
A printable ink that is both conductive and transparent can also block radio waves.

What membrane can do in dealing with radiation
USTC recently found that polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC) can release acidic substance under γ radiation, whose amount is proportional to the radiation intensity.

First measurements of radiation levels on the moon
In the current issue (25 September) of the prestigious journal Science Advances, Chinese and German scientists report for the first time on time-resolved measurements of the radiation on the moon.

New biomaterial could shield against harmful radiation
Northwestern University researchers have synthesized a new form of melanin enriched with selenium.

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.

Nimotuzumab-cisplatin-radiation versus cisplatin-radiation in HPV negative oropharyngeal cancer
Oncotarget Volume 11, Issue 4: In this study, locally advanced head and neck cancer patients undergoing definitive chemoradiation were randomly allocated to weekly cisplatin - radiation {CRT arm} or nimotuzumab -weekly cisplatin -radiation {NCRT arm}.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

Radiation breaks connections in the brain
One of the potentially life-altering side effects that patients experience after cranial radiotherapy for brain cancer is cognitive impairment.

Fragmenting ions and radiation sensitizers
The anti-cancer drug 5-fluorouracil (5FU) acts as a radiosensitizer: it is rapidly taken up into the DNA of cancer cells, making the cells more sensitive to radiotherapy.

'Seeing the light' behind radiation therapy
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime.

Read More: Radiation News and Radiation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.