Predicting molecular bond energy by artificial intelligence

November 28, 2019

Theoretical prediction of molecular bond energy is of key importance for understanding molecular properties. For instance, information of chemical reaction pathways can be inferred from a numerical analysis of the bond energies involved. A well-accepted way is to calculate the difference in values of molecular energies before and after chemical bond rupture using quantum chemistry tools. However, for complicated chemical reactions, a large number of chemical bonds need to be analyzed, requiring many repeated quantum mechanics calculations that consume heavy computing resources. Other ways such as mapping method are unreliable and limited. Developing an efficient solution for quickly and accurately predicting bond energies remain an open challenge.

Recently, data-driven research paradigm based on big data and artificial intelligence (AI) techniques is increasingly important in chemistry. Especially, neural networks ---- a class of algorithms featured by learning characters of data, is deemed a promising AI approach that can significantly reduce the computation cost of complex problems with well-defined rules yet high-dimensional data. "Inspired by this," Prof. Jiang Jun introduced, a research group leader at Hefei National Laboratory for Physical Science at the Microscale of University of Science and Technology of China, "we have employed neural networks to predict the molecular bond energies. In addition, we found that the combination of artificial intelligence and theoretical calculations of quantum chemistry provides an efficient tool for accurately and quickly predicting molecular bond energy."

"Recent years, our group has devoted ourselves to the development of the application of machine learning technology in the field of quantification, and has tried to make it an important tool for solving quantitative problems", Jiang said, "in this work, we first obtained 8,000 sets of bond energy data based on quantum chemical calculations. Through the random forest method, the appropriate descriptors are selected from the basic information (e.g. geometry and charge) of molecules, and the 8,000 sets of quantum chemical data are iteratively learned through the neural network, and the neural network model between the molecular bond energy and its basic state information is established. This model successfully predicted the molecular bond energy."

In addition, the performance of neural network models with different kinds of atomic charge distributions is also compared. This work proves the feasibility and advantages of machine learning in molecular bond energy simulation, and provides a reasonable solution for predicting molecular bond energy in complex systems.
This work was supported by the National Key Research and Development Program of China (2017YFA0303500, 2018YFA0208603), the National Natural Science Foundation of China (21633006, 21633007, 21790350), the Fundamental Research Funds for the Central Universities (WK2340000072).

Chao Feng, Edward Sharman, Sheng Ye, Yi Luo, Jun Jiang, A neural network protocol for predicting molecular bond energy. Sci. China Chem., 2019, doi: 10.1007/s11426-019-9619-8

Science China Press

Related Artificial Intelligence Articles from Brightsurf:

Physics can assist with key challenges in artificial intelligence
Two challenges in the field of artificial intelligence have been solved by adopting a physical concept introduced a century ago to describe the formation of a magnet during a process of iron bulk cooling.

A survey on artificial intelligence in chest imaging of COVID-19
Announcing a new article publication for BIO Integration journal. In this review article the authors consider the application of artificial intelligence imaging analysis methods for COVID-19 clinical diagnosis.

Using artificial intelligence can improve pregnant women's health
Disorders such as congenital heart birth defects or macrosomia, gestational diabetes and preterm birth can be detected earlier when artificial intelligence is used.

Artificial intelligence (AI)-aided disease prediction
Artificial Intelligence (AI)-aided Disease Prediction Announcing a new article publication for BIO Integration journal.

Artificial intelligence dives into thousands of WW2 photographs
In a new international cross disciplinary study, researchers from Aarhus University, Denmark and Tampere University, Finland have used artificial intelligence to analyse large amounts of historical photos from WW2.

Applying artificial intelligence to science education
A new review published in the Journal of Research in Science Teaching highlights the potential of machine learning--a subset of artificial intelligence--in science education.

New roles for clinicians in the age of artificial intelligence
New Roles for Clinicians in the Age of Artificial Intelligence Announcing a new article publication for BIO Integration journal.

Artificial intelligence aids gene activation discovery
Scientists have long known that human genes are activated through instructions delivered by the precise order of our DNA.

Artificial intelligence recognizes deteriorating photoreceptors
A software based on artificial intelligence (AI), which was developed by researchers at the Eye Clinic of the University Hospital Bonn, Stanford University and University of Utah, enables the precise assessment of the progression of geographic atrophy (GA), a disease of the light sensitive retina caused by age-related macular degeneration (AMD).

Classifying galaxies with artificial intelligence
Astronomers have applied artificial intelligence (AI) to ultra-wide field-of-view images of the distant Universe captured by the Subaru Telescope, and have achieved a very high accuracy for finding and classifying spiral galaxies in those images.

Read More: Artificial Intelligence News and Artificial Intelligence Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to