Tracking A Killer's Progression

November 28, 1998

Researchers at the University of Kentucky report today the discovery a novel attack route used by one of the plague bacterium's killer toxins. Their work with Yersinia pestis, the bacterium which causes the plague, is published in the Nov. 28 issue of Molecular Microbiology. The study provides new clues about how a toxic protein called YopM, originally discovered at UK, targets and attacks the cell's nucleus. Only two other pathogenic bacterial proteins are known to enter the nucleus of cells.

"This finding raises the intriguing possibility that YopM may contribute to the development of disease by altering human gene expression," said Susan Straley, Ph.D., professor of microbiology and immunology, UK College of Medicine, and director of the research team for the project. "We believe that further study of the mode of action of this protein in host cells will provide insight into bacterial causes of disease and cell biology."

Yersinia invades an organism and attaches itself to cell surfaces. YopM is one of six toxins called Yops that Yersinia injects directly into the cell. Yops act by scrambling the functions necessary for humans to mount a defense against the bacteria.

Little is known about how these mysterious toxins function to destroy the immune response, but researchers believe Yops target phagocytic cells, the body's first line of defense against invaders. The bacterial killing response of the phagocytic cells is paralyzed, and the cells are rendered incapable of sending messages to other cells to begin an immune response to the pathogen.

UK researchers propose that YopM uses complex interactions to reach and pass through the controlled gates of the nucleus. They believe YopM binds to the exterior of acidic compartments, called endosomal vesicles, and moves as new vesicles arise. YopM may act to prevent enter the nucleus by itself or it may become associated with a protein. Once the nucleus is invaded, YopM may act to prevent the development of a defense that is needed for clearance of bacteria from the body.

"We are aiming future studies at identifying YopM's ultimate molecular target and hope to reveal the molecular partners used by the protein on its journey through the human cell," Straley said. "These studies will provide a new window into how our cells function, and the understanding gained from them will benefit all endeavors that depend upon understanding how the human body works."

The researchers' work helps biotechnology companies develop improved therapies for many diseases, Straley said. Scientists view Yersinia pestis as a useful model pathogen that merits the type of study underway in Straley's lab because several broadly applicable principles have been discovered from such studies in the past.

Moreover, plague still poses a public health threat and continues to be a global problem. If a drug-resistant strain should emerge abroad, Americans are only a plane ride away from potential exposure to it. In the United States, 41 cases were reported between 1993 and 1996. Worldwide, there are 1,000 to 2,000 cases each year, and there is always the concern that a serious epidemic may develop. First author on the paper is researcher Elzbieta Skrzypek, Ph.D., scientist II, UK College of Medicine, and Clarissa Cowan, research analysts, UK College of Medicine, also contributed to the work. The project was supported until September 1997 by the Department of the Army and since then by the National Institute of Allergy and Infectious Diseases.
-end-


University of Kentucky Medical Center

Related Immune Response Articles from Brightsurf:

Boosting chickens' own immune response could curb disease
Broiler chicken producers the world over are all too familiar with coccidiosis, a parasite-borne intestinal disease that stalls growth and winnows flocks.

Cells sacrifice themselves to boost immune response to viruses
Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.

Children's immune response more effective against COVID-19
Children and adults exhibit distinct immune system responses to infection by the virus that causes COVID-19, a finding that helps explain why COVID-19 outcomes tend to be much worse in adults, researchers from Yale and Albert Einstein College of Medicine report Sept.

Which immune response could cause a vaccine against COVID-19?
Immune reactions caused by vaccination can help protect the organism, or sometimes may aggravate the condition.

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.

'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.

A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.

Read More: Immune Response News and Immune Response Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.