Oral saline spray may slash spread of exhaled pathogens

November 29, 2004

CAMBRIDGE, Mass. -- Some individuals exhale many more pathogen-laden droplets than others in the course of ordinary breathing, scientists have found, but oral administration of a safe saline spray every six hours might slash exhalation of germs in this group by an average 72 percent.

The researchers, at Harvard University and biotechnology firms Pulmatrix and Inamed, report results from their clinical study of 11 healthy males this week on the web site of the Proceedings of the National Academy of Sciences. Their work may help decrease the spread of bacteria and viruses responsible for airborne infectious diseases such as influenza, tuberculosis, and SARS.

"We found a sharp demarcation between individuals who are 'high' and 'low' producers of bioaerosols, small droplets of fluid exhaled from the lungs that may carry airborne pathogens," says lead author David A. Edwards, Gordon McKay Professor of the Practice of Biomedical Engineering in Harvard's Division of Engineering and Applied Sciences. "Roughly half our subjects exhaled tens of bioaerosol particles per liter, while the other half exhaled thousands of these particles. The number of exhaled particles varied dramatically over time and among subjects, ranging from a low of one particle per liter to a high of more than 10,000."

These results led Edwards and his co-authors to conclude that roughly half the population -- 6 of 11 individuals in their study -- may produce more than 98 percent of all potentially pathogenic bioaerosols.

The researchers found that a six-minute inhalation of aerosolized salt-water solution, often used in the treatment of asthma, can markedly reduce the number of bioaerosol particles exhaled by these "high-producers" for up to six hours. Using a cough machine designed to simulate normal human breathing, they linked the reduction in droplet exhalation after saline administration to increased surface tension among fluids lining human airways, producing larger bioaerosol droplets that are less likely to remain airborne and exit through the mouth.

"Administration of nebulized saline to individuals with viral or bacterial illnesses could dramatically reduce spread of these pathogens without interfering with any other treatments," Edwards says. "This work could also point the way to new hygiene protocols in clinical settings as well as enclosed spaces."

It has long been known that exhaled bioaerosol particles constitute an important vector for the spread of infectious diseases, although the work by Edwards and colleagues is the first to suggest that a distinct subset of the human population may be far more likely to spread pathogens via bioaerosols. Viruses known to spread from humans and animals through breathing, sneezing, and coughing include those responsible for measles, influenza, foot and mouth disease, chicken pox, bronchitis, smallpox, and SARS. Airborne bacteria include anthrax, Escherichia coli, Klebsiella pneumoniae, Francisella tularensis, and tuberculosis.

Edwards' co-authors include Howard Stone in Harvard's Division of Engineering and Applied Sciences; Edward Nardell at Harvard Medical School; Jonathan C. Man and Jeffrey P. Katstra at Pulmatrix; and Peter Brand, K. Sommerer, and Gerhard Scheuch at Inamed. The work was supported by Pulmatrix.
-end-


Harvard University

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.