Brain remapping may be key to recovery from stroke

November 29, 2004

CHICAGO - People suffering from paralysis due to stroke or traumatic brain injury may be able to reprogram their brains to improve motor skills and to control artificial limbs, according to a study presented today at the annual meeting of the Radiological Society of North America (RSNA).

Using functional magnetic resonance imaging (fMRI) and a "cyberglove" to record brain changes during motor activities, researchers demonstrated that people can learn to remap, or redirect, motor commands. This is an important step in stroke recovery and in training strategies for brain-machine interfaces--conduits between the brain and artificial limbs.

"For stroke patients and others who have a brain deficit, coordinating what they see with body movement is very difficult," said the study's lead author Kristine Mosier, D.M.D., Ph.D., assistant professor of radiology at Indiana University in Indianapolis. "The brain must remap or relearn the process of matching visual input with sensory input. Our study demonstrated that individuals can learn to remap motor commands."

When neurons--the primary cells of the nervous system that make all thought, feeling and movement possible--are damaged by a stroke or brain injury, other neurons take over for them. But until now, scientists weren't sure which neurons compensated for damaged neurons, or how the brain cells learned their new jobs.

Dr. Mosier's study simulated a learning problem by having 17 healthy adults wear a synthetic glove with fiber-optic cables on their dominant hand. The glove translated hand movements into signals, which were sent to the computer and transformed into the two-dimensional position of a cursor on the computer screen. The subjects were then asked to align the cursor with 50 different targets while researchers used fMRI to observe which areas of the brain controlled the intricate movements of the hand.

fMRI uses radio waves and a strong magnetic field to image the body. It can identify signs that neurons in a specific area of the brain are "firing," that is, processing information and giving commands to the body.

"Once we understand which part of the brain network does what, we will be able to tailor physical therapy approaches to an individual's brain deficit," Dr. Mosier explained. "Similarly, we'll be able to work with surgical patients ahead of time, laying the groundwork for re-learning before they undergo surgery on a particular part of the brain."

In addition to offering insight into the rehabilitation of stroke and brain injury patients, the study provides valuable information for the development of training strategies for brain-machine interfaces, which enable patients with brain injuries to operate external devices, such as artificial limbs, using only their brain signals. This new technology requires implanting electrodes in the brain to pick up movement-producing signals from neurons. A computer then translates those brain signals into commands instructing a robotic device to move.

"As we get a better understanding of what areas in the brain are involved in the remapping process, we'll be able to determine the optimal place in the brain to place the electrodes," Dr. Mosier said.

Co-authors are Yang Wang, M.D., Robert Scheidt, Ph.D., Santiago Acosta, M.S., and Ferdinando Mussa-Ivaldi, Ph.D.
Note: Copies of RSNA 2004 news releases and electronic images will be available online at beginning Monday, Nov. 29.

RSNA is an association of more than 37,000 radiologists, radiation oncologists and related scientists committed to promoting excellence in radiology through education and by fostering research, with the ultimate goal of improving patient care. The Society is based in Oak Brook, Ill.

Editor's note: The data in these releases may differ from those in the printed abstract and those actually presented at the meeting, as researchers continue to update their data right up until the meeting. To ensure you are using the most up-to-date information, please call the RSNA newsroom between Nov. 27 and Dec. 3 at 312-949-3233.

Radiological Society of North America

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to