UF, Columbia scientists closer to new cancer detection method

November 29, 2005

University of Florida researchers say they are a step closer to a technique to easily detect a wide variety of cancers before symptoms become apparent.

The findings, currently online in the Proceedings of the National Academy of Sciences, involve introducing molecularly engineered strands of DNA into cell cultures and observing whether they unleash a fluorescent burst after they adhere to cancer proteins.

The technique could enable doctors to search within extremely complex fluid or tissue samples to pinpoint biomarkers - proteins that signal that something is amiss.

"Even when the cancer biomarkers are in extremely low concentration we have been able to detect them," said Weihong Tan, Ph.D., a UF Research Foundation professor of chemistry in the College of Liberal Arts and Sciences and a member of the UF Genetics Institute, the UF Shands Cancer Center and the McKnight Brain Institute. "This approach could help for early diagnosis of cancer, as well as for detecting residual cancer in patients after treatment."

It works by capitalizing on fluorescent molecules engineered into tiny strands of DNA or RNA. Known as aptamers, the strands act as molecular beacons, corresponding and readily binding to a sought-after substance such as cancer protein.

In this case, the target was platelet derived growth factor, or PDGF, a protein that regulates cell growth and division. Elevated PDGF levels have been linked to different forms of cancer, and have been found in patients with malignancies of the ovaries, kidneys, lung, pancreas and brain.

After the probe physically conforms to the PDGF, the molecule can be snapped on like a light switch to flash a fluorescent signal.

Tan, the associate director of UF's Center for Research at the Bio/Nano Interface, is seeking to patent the technology in conjunction with UF. He has been issued four U.S. patents for his work in the past two years.

"In your body, if you want to detect a molecule that coexists with many other molecules, you have to sort through the signals from the other molecules," Tan said. "This technique solves the problem caused by background signals from both the probe and the biological fluids where the proteins reside. We have engineered a molecular switch that turns on the fluorescence."

The probe's green fluorescent burst lasts little more than a billionth of a second - a nanosecond - but just long enough to separate it from surrounding signals, according to co-author Nicholas Turro, Ph.D., the William P. Schweitzer professor of chemistry at Columbia University. He also holds professorships in the department of chemical engineering and the department of earth and environmental engineering.

"A cell contains a lot of material that absorbs and emits light when it's excited," Turro said. "That's been the problem. However, if you wait 10 nanoseconds, the signals from the native fluorescence go away. What's left is the signal from the probe, which is engineered to be more long-lived at about 50 nanoseconds."

The result is a clear indication of the presence of PDGF.

"The problem of background signals is a major obstacle in many of these biodetection methods," said Paras N. Prasad, Ph.D., a distinguished professor of chemistry and executive director of the Institute for Lasers, Photonics and Biophotonics at the University of Buffalo. "Dr. Tan and his colleagues were able to address that with their light-switching method. This is a significant advancement in minimizing a frequent problem."

Much work remains to be done, but the technique potentially could be a diagnostic tool for cancer and other diseases. It could also be used to detect illicit drugs, such as cocaine, in the body, researchers say.

"Eventually we would like to see this assay become as convenient as a pregnancy test," said Chaoyong James Yang, a chemistry doctoral student in the Tan group and the first author of the paper. "Put the probe inside a few drops of body fluid or blood and a color change would be an indication of the existence of a cancer biomarker in the body. In that event, the person could seek a more thorough examination."
-end-


University of Florida

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.