Emerging new properties at oxide interfaces

November 29, 2011

In many ionic materials, including the oxides, surfaces created along specific directions can become electrically charged. By the same token, such electronic charging, or 'polarisation', can also occur at the interface of two connecting materials.

Theoretically, this could lead to the build-up of an ever increasing voltage in the materials in certain systems, a situation known as a 'polarity catastrophe'. Certainly this cannot occur in practical systems, for energy sake, and Nature deals with this situation by reconstructing the electronic configuration of the interface via a shifting of charges across the interface, or by structural reconstructions, namely, the displacement of atoms.

With oxide materials, a unique consequence of these reconstructions is that it provides a means to create novel electronic phases, stabilised by the interface, and which cannot exist in the bulk.

Dr. Ariando from the National University of Singapore's (NUS) Department of Physics and NUS Nanoscience and Nanotechnology-NanoCore, along with his co-workers, showed that at this interface, a remarkable combination of strong diamagnetism (superconductor like), paramagnetism and ferromagnetism can co-exist with the quasi two-dimensional electron gas when prepared under a more oxidising condition.

Past studies had shown that two-dimensional conducting planes, in the form of quasi two-dimensional electron gas, could emerge between otherwise non-magnetic insulating oxide, Lanthanum Aluminate (LaAlO3) and Strontium Titanate (SrTiO3) (see Figure 1).

Interestingly, Dr. Ariando's team had also shown that the ferromagnetic phase was stable even above room temperature and the diamagnetism below a relatively high temperature of 60 K (see Figure 2).

Industrial applications

The results also indicate that the free surface of SrTiO3 could well be responsible for all these fascinating phenomena. The SrTiO3 resembles Silicon. This will have a significant impact on industry since Silicon has been used in semiconductor technology - silicon has been the workhorse for oxide-based devices and electronics.

These multiple electronic and magnetic phases at oxide interfaces could yield interesting technological applications. That a variety of magnetic states can be produced close to the surface (< 10 nm) by changing the external stimulus to the SrTiO3 or the interface of LaAlO3 /SrTiO3, be it change in oxygen pressure or magnetic field, proves that this is a very active interface, and that it can yield strong responses to external stimuli.

One could well consider building novel sensors out of these interfaces that could be used as, say, oxygen sensors, or even magnetic sensors. Still, where these applications are concerned, there is a need to further understand these phenomena and optimise the device configuration.

The research of Dr. Ariando and his co-workers in the oxide interface field is reminiscent of the times when two-dimensional electron gas in the semiconductor heterostructures first became available, and the quantum Hall effect and fractional quantum Hall effect were discovered, both resulting in Nobel prizes.

The physics of the oxide material systems is however richer, involving much stronger interaction between the electrons, mutually and within the crystal lattice. There is great interest in exploring these interfaces in the quest for new nano-electronic devices.
-end-
About National University of Singapore (NUS)

A leading global university centred in Asia, the National University of Singapore (NUS) is Singapore's flagship university which offers a global approach to education and research, with a focus on Asian perspectives and expertise.

NUS has 16 faculties and schools across three campuses. Its transformative education includes a broad-based curriculum underscored by multi-disciplinary courses and cross-faculty enrichment. Over 36,000 students from 100 countries enrich the community with their diverse social and cultural perspectives.

NUS has three Research Centres of Excellence (RCE) and 21 university-level research institutes and centres. It is also a partner in Singapore's fifth RCE. NUS shares a close affiliation with 16 national-level research institutes and centres. Research activities are strategic and robust, and NUS is well-known for its research strengths in engineering, life sciences and biomedicine, social sciences and natural sciences. It also strives to create a supportive and innovative environment to promote creative enterprise within its community.

For more information, please visit National University of Singapore

National University of Singapore

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.