Enzyme inhibition protects against Huntington's disease damage in 2 animal models

November 29, 2012

Treatment with a novel agent that inhibits the activity of SIRT2, an enzyme that regulates many important cellular functions, reduced neurological damage, slowed the loss of motor function and extended survival in two animal models of Huntington's disease. The study led by Massachusetts General Hospital (MGH) researchers will appear in the Dec. 27 issue of Cell Reports and is receiving advance online release.

"I believe that the drug efficacy demonstrated in two distinct genetic HD mouse models is quite unique and highly encouraging," says Aleksey Kazantsev, PhD, of the MassGeneral Institute for Neurodegenerative Disorders, senior author of the study. "The outcome suggests that designing stronger SIRT2 inhibitors is a valid strategy for developing drugs to slow the progression of HD, something that currently does not exist."

Earlier studies by Kazantsev's group and others showed that inhibiting SIRT2 (sirtuin-2 deacetylase) protected against neuronal damage in cellular and animal models of HD and Parkinson's disease - both of which are characterized by the buildup of abnormal proteins in the brain - and in other neurodegenerative disorders. The current study was designed to evaluate in two mouse models of HD use of a new, brain-permeable SIRT2 inhibitor called AK-7, first identified by members of the MGH team in 2011. One model called R6/2 is characterized by robust progression and severity of neurological symptoms. The other, called 140 CAG Htt knock-in, is genetically closer to the human disease. In both models, the mutated huntingtin gene contains extended repeats of the nucleotide triplet CAG, leading to development of HD-like motor symptoms and the same type of brain damage seen in the devastating neurological disorder.

Animals from both strains received two daily injections of AK-7 at one of three dose levels - 10, 20 or 30 mg/kg - beginning at the age of 4 weeks and continuing for up to 14 weeks. Among the R6/2 animals, those treated with AK-7 retained significantly more motor function than did untreated animals and had less shrinkage of brain structures affected by HD and smaller aggregates of the mutant huntingtin protein characteristic of the disorder. Treated animals in this model, which usually die prematurely, lived 13 percent longer than untreated R6/2 mice.

In the experiments with the 140 CAG Htt knock-in model, treated animals maintained activity levels similar to those of normal mice for several months, while untreated mice showed a rapid decline in motor activity. In that model, 14 weeks of treatment reduced mutant huntingtin aggregates in the most affected area of the brain by more than 50 percent, compared with untreated animals from the same strain.

"The golden rule in the HD field for identifying compounds that could work in patients is showing efficacy in a robust HD model like R6/2 and in the more genetically accurate to human disease 140 CAG Htt knock-in model," says Kazantsev, an associate professor of Neurology at Harvard Medical School. "The next essential and critical step will be testing additional, structurally diverse SIRT2 inhibitors in HD mice, and we are preparing to test one that is 10 times more potent than AK-7. If and when that compound and others also show efficacy, that will give us definitive proof of the therapeutic potential of SIRT2 inhibition for HD."
-end-
Vanita Chopra, PhD, MGH Neurology, is lead author of the Cell Reports paper. Additional co-authors are Luisa Quinti, PhD, Lorraine Vollor, K. Lakshmi Narayanan, and Steven Hersch, MD, PhD, MGH Neurology; Jinho Kim, Christina Edgerly, Patricia M. Cipicchio, Molly A. Lauver and Robert J. Ferrante, PhD, University of Pittsburgh; and Richard B. Silverman, PhD, Northwestern University. The study was supported by National Institutes of Health grant 1U01NS066912-01A1.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine. In July 2012, MGH moved into the number one spot on the 2012-13 U.S. News & World Report list of "America's Best Hospitals."

Massachusetts General Hospital

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.