'Dark core' may not be so dark after all

November 29, 2012

ATHENS, Ohio (Nov. 29, 2012)--Astronomers were puzzled earlier this year when NASA's Hubble Space Telescope spotted an overabundance of dark matter in the heart of the merging galaxy cluster Abell 520. This observation was surprising because dark matter and galaxies should be anchored together, even during a collision between galaxy clusters.

Astronomers have abundant evidence that an as-yet-unidentified form of matter is responsible for 90 percent of the gravity within galaxies and clusters of galaxies. Because it is detected via its gravity and not its light, they call it "dark matter."

Now, a new observation of Abell 520 from another team of astronomers using a different Hubble camera finds that the core does not appear to be over-dense in dark matter after all. The study findings were published in The Astrophysical Journal.

"The earlier result presented a mystery. In our observations we didn't see anything surprising in the core," said study leader Douglas Clowe, an associate professor of physics and astronomy at Ohio University. "Our measurements are in complete agreement with how we would expect dark matter to behave."

Hubble observations announced earlier this year by astronomers using Hubble's Wide Field Planetary Camera 2 suggested that a clump of dark matter was left behind during a clash between massive galaxies clusters in Abell 520, located 2.4 billion light-years away. The dark matter collected into a "dark core" that contained far fewer galaxies than would be expected if the dark and luminous matter were closely connected, which is generally found to be the case.

Because dark matter is not visible, its presence and distribution is found indirectly through its gravitational effects. The gravity from both dark and luminous matter warps space, bending and distorting light from galaxies and clusters behind it like a giant magnifying glass. Astronomers can use this effect, called gravitational lensing, to infer the presence of dark matter in massive galaxy clusters. Both teams used this technique to map the dark matter in the merging cluster.

Clowe's team used Hubble's Advanced Camera for Surveys (ACS) to measure the amount of dark matter in the cluster. ACS observed the cluster in three colors, allowing the astronomers to distinguish foreground and background galaxies from the galaxies in the cluster. From this observation, the team made an extremely accurate map of the cluster's dark matter. "With the colors we got a more precise selection of galaxies," Clowe said.

The astronomers estimated the amount of dark matter in the cluster by measuring the amount of gravitational "shear" in the Hubble images. Shear is the warping and stretching of galaxies by the gravity of dark matter. More warping indicates the presence of more gravity than is inferred from the presence of luminous matter, therefore requiring the presence of dark matter to explain the observation. "The WFPC2 observation could have introduced anomalous shear and not a measure of the dark matter distribution," Clowe explained.

Using the new camera, Clowe's team measured less shear in the cluster's core than was previously found. In the study the ratio of dark matter to normal matter, in the form of stars and gas, is 2.5 to 1, which is what astronomers expected. The earlier WFPC2 observation, however, showed a 6-to-1 ratio of dark matter to normal matter, which challenged theories of how dark matter behaves.

"This result also shows that as you improve Hubble's capabilities with newer cameras, you can take a second look at an object," Clowe said.

His team is encouraging other scientists to study its data and conduct their own analysis on the cluster.
-end-
Clowe's co-authors on the paper are Maxim Markevitch of NASA Goddard Space Flight Center, Greenbelt, Md.; Marusa Bradac of the University of California, Davis; Anthony H. Gonzalez and Sun Mi Chung of the University of Florida, Gainesville; Richard Massey of Durham University, Durham, England; and Dennis Zaritsky of the University of Arizona's Steward Observatory, Tucson, Ariz.

Contacts: Douglas Clowe, (740) 593-0063, clowe@ohio.edu; Director of Research Communications Andrea Gibson, (740) 597-2166, gibsona@ohio.edu.

Ohio University

Related Dark Matter Articles from Brightsurf:

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms.

Seeing dark matter in a new light
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method.

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.

Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.

Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Read More: Dark Matter News and Dark Matter Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.