Predicting material fatigue

November 29, 2012

The scientists of Kiel University, University of Erlangen-Nuremberg and the Technische Universität München (TUM) have published their results in the current issue of the journal Advanced Materials.

"The luminescent features of zinc oxide tetrapod crystals are well established. According to our work hypothesis, these characteristics showed pronounced variations under a mechanical load, and we realised that it could help to detect internal damages of composite materials", says Dr. Yogendra Mishra of Kiel University's Technical Faculty. In one experiment, the scientists added zinc oxide tetrapod shaped crystals to a silicone (polydimethylsiloxane) polymer and tested its general properties. They found that the resulting composite material is on the one hand stronger than silicon and on the other hand emits light in different colors when exposed to UV light. When the material is subjected to mechanical stress, the intensities of the emitted lights changes.

"The micro-nano sized crystals give a visual warning when the composite material is about to fail under stress", explains PhD student Xin Jin. "The alteration of the luminescent characteristics of defined semiconductor microstructures under load - as we could show for zinc oxide tetrapods - might be also interesting of many other phosphor material systems", adds Professor Cordt Zollfrank who leads the research area 'biogeneous polymers' at TUM. "We expect further interesting developments in this emerging field on "self-reporting materials".

Composite polymer materials are used in diverse fields from dental implants to spacecrafts. They are made from two or more constituent materials with different properties such as silicone and zinc oxide crystals which together render better properties. On demands, they can be designed to be light-weight, mechanically robust and still inexpensive. Professor Rainer Adelung, leader of the study, says: "Zinc oxide crystals seem to be an excellent component to design numerous specific composite materials - also for constructions in which stability is critical to life."
-end-
Original publication:

Xin Jin, Michael Götz, Sebastian Wille, Yogendra Kumar Mishra, Rainer Adelung, Cordt Zollfrank (2012): A novel concept for self-reporting materials: Stress sensitive photoluminescence in ZnO tetrapod filled elastomers, Advanced Materials, doi: adma.201203849

The study was funded by the German Research Foundation (DFG) within the Collaborative Research Centers 677 and 855. Contact:

Prof. Dr. Rainer Adelung
Kiel University, Germany
phone: +49 431 880-6116
e-Mail: ra@tf.uni-kiel.de

Prof. Dr Cordt Zollfrank
Technical University Munich, Germany
phone: +49 9421 187-450
e-mail: cordt.zollfrank@tum.de
http://www.wz-straubing.de/

Technical University of Munich (TUM)

Related Stress Articles from Brightsurf:

Stress-free gel
Researchers at The University of Tokyo studied a new mechanism of gelation using colloidal particles.

Early life stress is associated with youth-onset depression for some types of stress but not others
Examining the association between eight different types of early life stress (ELS) and youth-onset depression, a study in JAACAP, published by Elsevier, reports that individuals exposed to ELS were more likely to develop a major depressive disorder (MDD) in childhood or adolescence than individuals who had not been exposed to ELS.

Red light for stress
Researchers from the Institute of Industrial Science at The University of Tokyo have created a biphasic luminescent material that changes color when exposed to mechanical stress.

How do our cells respond to stress?
Molecular biologists reverse-engineer a complex cellular structure that is associated with neurodegenerative diseases such as ALS

How stress remodels the brain
Stress restructures the brain by halting the production of crucial ion channel proteins, according to research in mice recently published in JNeurosci.

Why stress doesn't always cause depression
Rats susceptible to anhedonia, a core symptom of depression, possess more serotonin neurons after being exposed to chronic stress, but the effect can be reversed through amygdala activation, according to new research in JNeurosci.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Stress in the powerhouse of the cell
University of Freiburg researchers discover a new principle -- how cells protect themselves from mitochondrial defects.

Measuring stress around cells
Tissues and organs in the human body are shaped through forces generated by cells, that push and pull, to ''sculpt'' biological structures.

Cellular stress at the movies
For the first time, biological imaging experts have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress.

Read More: Stress News and Stress Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.