Nav: Home

Digital microbes for munching yourself healthy

November 29, 2016

Hundreds of different bacterial species live in the human gut, helping us to digest our food. The metabolic processes of these bacteria are not only tremendously important to our health -- they are also tremendously complex. A research team at the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg has taken an important step in modelling the complexity of the human gut's bacterial communities -- the microbiome -- on the computer. The researchers gathered all known data on the metabolism of 773 bacterial strains -- more than ever before. Working from this data, they developed a computer model for each bacterial strain. This collection, known as AGORA, can now be used on the computer to simulate metabolic processes taking place in the microbes and to investigate how they affect the metabolism of other microbes and that of the human host. The LCSB team publishes its results in the scientific journal Nature Biotechnology (DOI: 10.1038/nbt.3703). The collection of predictive metabolic models is available to researchers via http://vmh.life.

The bacterial species living in the human gut not only help us to digest our food, but also produce valuable vitamins for us and even affect the way we metabolise drugs. The metabolic processes of these bacteria are crucial to our health, and are highly complex: The bacteria are in constant contact with our gut cells, and the different organisms continually influence one another. Thus, they play as important a role in our health as they do in numerous diseases. Despite many advances in science, our knowledge of these microbes is still limited. To improve our understanding and to aid novel discoveries, the research team led by LCSB scientist Prof. Dr. Ines Thiele, head of the "Molecular Systems Physiology" group, has now created the most comprehensive collection of computational models for 773 different gut microbes, capturing their individual metabolisms, called AGORA. "AGORA is based on a new concept for the comparative reconstruction of bacterial metabolic models," says Ines Thiele: "It allows the analysis of a much greater number of bacterial strains than was ever possible before. With AGORA, and by including other datasets, we can systematically study the metabolic interactions within the gut microbiome and how these interactions are influenced by external factors, including the diet and host metabolism."

The first author of the study, Stefania Magnusdottir, is currently doing her PhD degree in Ines Thiele's group at the LCSB: "The basis for our paper was a thorough investigation of the literature on microbial metabolism," she explains. "We gathered known experimental and genomic data on the metabolism of 773 bacterial strains to refine and validate the computational models. Based on this, we characterised each microbe's metabolism and found that both their metabolic capabilities and our diet play important roles in how the microbes interact with each other. We can generate personalised microbiome models by integrating these computational models with metagenomic data, which can be obtained by sequencing the microbes present in stool samples of healthy and sick individuals."

"With our models, we can search, in a targeted manner, for metabolic pathways that are fundamentally important to the microbiome in the gut, and we can work out what could trigger diseases when these metabolic processes go wrong," says co-author Dr. Ronan Fleming, who leads the Systems Biochemistry group at the LCSB: "The AGORA models will now allow us to study the impact of host-microbiome interactions in specific diseases or to use them in the emerging field of personalised medicine."

Using AGORA to study the gut microbiome will involve close collaboration with researchers who are investigating the gut microbiome in the laboratory, including Prof. Dr Paul Wilmes, head of the LCSB Eco-Systems Biology group. His group has developed methods for studying gut bacteria under real-life conditions. "AGORA directs us to targeted bacterial metabolic processes to perform focused experiments, allowing precise and comprehensive modelling of processes within the gut microbes," Paul Wilmes asserts.

For Ines Thiele, the high degree of precision is not an end in itself: "We want to understand how the microbes modulate human metabolism when we modify our diet. This may give us clues as to how we may prevent, or even treat, diseases, for example by identifying dietary supplements that could modify the interactions within a diseased gut microbiome to imitate the metabolic functions of a healthy one."
-end-
The AGORA project has received support from the Luxembourg National Research Fund's (FNR) ATTRACT, CORE, Proof-of-Concept and AFR funding programmes as well as from the Advanced Computing program of the US Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research.

University of Luxembourg

Related Metabolism Articles:

Pulling the tablecloth out from under essential metabolism
Most organisms share the biosynthetic pathways for making crucial nutrients because it is is dangerous to tinker with them.
Metabolism: Beta cells under fire
Type 2 diabetes causes pathological changes in the beta cells.
New insights into the tumor metabolism
Tumors, inflammation and circulatory disorders locally disturb the body's acid-base balance.
Fighting malaria through metabolism
EPFL scientists have fully modeled the metabolism of the deadliest malaria parasite.
Fighting malaria through mathematical analysis of parasite's metabolism
A new mathematical model, based on the deadliest malaria parasite, Plasmodium falciparum, could help develop antimalarials by identifying key metabolic targets, according to a study published in PLOS Computational Biology by Vassily Hatzimanikatis at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, and colleagues.
Research helps explain how B cell metabolism is controlled
New research from Sanford Burnham Prebys Medical Discovery Institute (SBP) addresses the lack of knowledge about how B cell metabolism adapts to each of their various environments -- development in the bone marrow, proliferation and hypermutation in the lymph nodes and spleen and circulation in the blood.
The importance of the glutamine metabolism in colon cancer
The importance of glutamine was made clear as a colon cancer specific metabolism.
Famine alters metabolism for successive generations
A famine that afflicted China between 1959 and 1961 is associated with an increased hyperglycemia risk not only among people who were born then, but also among the children they had a generation later.
Targeting breast cancer metabolism to fight the disease
How does a cancer cell burn calories? New research from Thomas Jefferson University shows that breast cancer cells rely on a different process for turning fuel into energy than normal cells.
Which genes are crucial for the energy metabolism of Archaea?
A research team led by Christa Schleper from the University of Vienna succeeded in isolating the first ammonia-oxidizing archaeon from soil: Nitrososphaera viennensis -- the 'spherical ammonia oxidizer from Vienna.' In the current issue of the renowned journal PNAS, the scientists present new results: they were able to detect all proteins that are active during ammonia oxidation -- another important piece of the puzzle for the elucidation of the energy metabolism of Archaea.

Related Metabolism Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".