Nav: Home

Using drugs for different diseases than initially intended for

November 29, 2016

One drug, one disease.

This is how we traditionally think about pharmaceutical drugs, but many of them are actually effective for more than one disease.

Take the drug gabapentin, originally developed for treating epilepsia, but today commonly prescribed as a pain killer. Or sildenafil, originally developed for treating high blood pressure, but today more often used to treat erectile dysfunction.

Value for patients

"With our recent research we predicted yet unknown beneficial effects for many drugs - on different diseases than they were initially developed for. This is of immense value, both for patients and for the pharmaceutical industry - in particular when it comes to avoiding expensive clinical trials on drug safety", says associate professor Jan Baumbach, University of Southern Denmark.

Jan Baumbach is an expert in computational biomedicine and his research focuses on retrieving meaningful information from big data generated nowadays in the health care sector.

Together with his colleagues Peng Sun from the Max-Planck Institute for Informatics in Germany, Jiong Guo from ShanDong University in China, and Rainer Winnenburg from Stanford University in the U.S., Baumbach has used novel big data analytics methods to trawl through massive pharmaceutical data, looking for drugs having a high potential to be what the scientists call "repurposable".

The results are published in the journal Drug Discovery Today.

From inflammatory diseases to Parkinson's

Baumbach's team found ca. thirty thousand "repurposable" drug candidates. Of these ca. eleven thousand have already been mentioned in scientific literature, and about 1,400 are reported in literature as concrete "repurposing" options.

This leaves roughly 19,000 highly confident drug-disease combinations that no one has yet considered to investigate - a huge gold mine for future pharmaceutical research.

One example is prednisone, originally developed to treat inflammatory diseases. This drug turns out to hold promise for treating Parkinson's disease as well. Another example is chlorpromazine, originally developed to treat schizophrenia, but likely to be effective against tuberculosis as well.

Avoiding animal trials

According to Baumbach and his co-authors, the pharmaceutical industry is facing great challenges due to a decreasing speed of new drug discoveries. New approaches are necessary.

"Drug design is extremely expensive, time-consuming and becoming increasingly complicated. Our approach is a way of inferring new purposes of existing drugs computationally - saving a lot of time, money and maybe more important, avoiding potentially dangerous animal and clinical trials", says Baumbach.

In their paper, the researchers write that the development cycle can be reduced through repositioning by as long as five years, compared to traditional drug discovery pipelines, adding:

Reduced safety risk for patients

"Repurposable drugs have significantly reduced safety risks for patients, because already known and registered drugs have been thoroughly studied with respect to their toxicity and possible side-effects."

The total list of the discovered 31,731 candidates is freely available and can be obtained from the researchers or the publication's online supplementary material. The list includes, for instance, a drug used to treat hypertension or one with anti-inflammatory effect given after organ transplantation that might be well suitable for treating certain cancer types.

Side bar: How did they find the candidates?

Computational approaches play an increasingly important part in nowadays pharmaceutical discoveries. In this case, the researchers created a new data model allowing them to mine for shared properties between genes, drugs and diseases, and to combine this novel data structure with an artificial intelligence to mine millions of scientific publications for approving or disproving hints.
-end-
Contact: Jan Baumbach, tel +45 6550-2309. E-mail: jan.baumbach@imada.sdu.dk

Jan Baumbach' s group website: http://www.baumbachlab.net

University of Southern Denmark

Related Clinical Trials Articles:

Why we should trust registered clinical trials
In a time when we have to rely on clinical trials for COVID-19 drugs and vaccines, a new study brings good news about the credibility of registered clinical trials.
Inclusion of children in clinical trials of treatments for COVID-19
This Viewpoint discusses the exclusion of children from coronavirus disease 2019 (COVID-19) clinical trials and why that could harm treatment options for children.
Review evaluates how AI could boost the success of clinical trials
In a review publishing July 17, 2019 in the journal Trends in Pharmacological Sciences, researchers examined how artificial intelligence (AI) could affect drug development in the coming decade.
Kidney patients are neglected in clinical trials
The exclusion of patients with kidney diseases from clinical trials remains an unsolved problem that hinders optimal care of these patients.
Clinical trials beginning for possible preeclampsia treatment
For over 20 years, a team of researchers at Lund University has worked on developing a drug against preeclampsia -- a serious disorder which annually affects around 9 million pregnant women worldwide and is one of the main causes of death in both mothers and unborn babies.
Underenrollment in clinical trials: Patients not the problem
The authors of the study published this month in the Journal of Clinical Oncology investigated why many cancer clinical trials fail to enroll enough patients.
When designing clinical trials for huntington's disease, first ask the experts
Progress in understanding the genetic mutation responsible for Huntington's disease (HD) and at least some molecular underpinnings of the disease has resulted in a new era of clinical testing of potential treatments.
New ALS therapy in clinical trials
New research led by Washington University School of Medicine in St.
Telemedicine helps improve participation in clinical trials
Videos and creative uses of other visuals provide a novel way to obtain informed consent during clinical trials to improve participants' understanding and retention of trial information, according to a study by Nemours Children's Health System presented at the American Thoracic Society (ATS) Annual Conference.
Not enough women included in some heart disease clinical trials
Women are underrepresented in clinical trials for heart failure, coronary artery disease and acute coronary syndrome but proportionately or overrepresented in trials for hypertension, atrial fibrillation and pulmonary arterial hypertension, when compared to incidence or prevalence of women within each disease population, according to a study in the Journal of the American College of Cardiology.
More Clinical Trials News and Clinical Trials Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.