A model explains effects like the formation of clouds from the sea

November 29, 2017

Everyday questions like what really causes clouds and rain, what gives sparkling wines their distinctive aroma and why do tyres generate so much smoke when they burn have answers that are intimately connected. The University of Seville teacher Alfonso Gañán has developed a particularly exact model to show the origin of all these phenomena from a universal microscopic mechanism that occurs on the surface of liquids, independently of mere evaporation. His results have been published in an article in Physical Review Letters, the general Physics review Physical Review Letters, which receives the most citations in the world.

It deals with one of the most common phenomena since the liquid phase appeared in the universe: all liquid, especially when it is in continuous movement like in the sea, always contains gases in a greater or lesser concentration, depending on the pressure and temperature to which it is subjected. Almost always, these gases end up as more or less small bubbles on the surface of the liquid. When these bubbles explode, especially if they are microscopic, minuscule drops are expelled at great velocity, and these drops almost instantly travel notable distances from the surface of the liquid that they came from.

These microscopic drops generate the seed of clouds (microscopic grains of salt that form the condensation nuclei of the drops of the clouds) on the surface of the sea, or they can spread all the flavours of a broth in the air independently of its volatility, or form smoke on burning liquids.

The size of these "ghost drops" and their speed are the principle factors that the model designed by Gañán explains and precisely determines, predicting perfectly the results of hundreds of exhaustive experiments carried out from the start of the 20th century until the present day. In accordance with this model, in function of the properties of a determined liquid, there exists a critical size of gas bubble which determines a remarkable singularity: the drop expelled becomes incredibly small, while its speed increases limitlessly at the same time as the size of the bubble shrinks and approaches this limit. Below this limit, no drops are expelled. Specifically, when this size is small enough (as in the case of small bubbles in water), the new model shows that the "ghost" micro-drops can reach supersonic speeds and reach truly meaningful heights.

This finally, and precisely, answers the questions at the beginning of this text. In the particular case of the sea, pollution and waste - which are especially concentrated on the surface, so lessening the surface tension, the principal origin of the problem - the model would explain a drastic decline in the production and size of these "cloud seeds". If it could be checked, this fact would show us a new pernicious human effect on climate, due to its impact on precipitation.
-end-


University of Seville

Related Climate Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Climate Insights 2020: Climate opinions unchanged by pandemic, but increasingly entrenched
A new survey provides a snapshot of American opinion on climate change as the nation's public health, economy, and social identity are put to the test.

Climate action goes digital
More transparent and accessible to everyone: information and communication technologies bring opportunities for transforming traditional climate diplomacy.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

How aerosols affect our climate
Greenhouse gases may get more attention, but aerosols -- from car exhaust to volcanic eruptions -- also have a major impact on the Earth's climate.

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

How trees could save the climate
Around 0.9 billion hectares of land worldwide would be suitable for reforestation, which could ultimately capture two thirds of human-made carbon emissions.

Climate undermined by lobbying
For all the evidence that the benefits of reducing greenhouse gases outweigh the costs of regulation, disturbingly few domestic climate change policies have been enacted around the world so far.

Climate education for kids increases climate concerns for parents
A new study from North Carolina State University finds that educating children about climate change increases their parents' concerns about climate change.

Read More: Climate News and Climate Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.