Study unlocks full potential of 'supermaterial' graphene

November 29, 2018

New research reveals why the "supermaterial" graphene has not transformed electronics as promised, and shows how to double its performance and finally harness its extraordinary potential.

Graphene is the strongest material ever tested. It's also flexible, transparent and conducts heat and electricity 10 times better than copper.

After graphene research won the Nobel Prize for Physics in 2010 it was hailed as a transformative material for flexible electronics, more powerful computer chips and solar panels, water filters and bio-sensors. But performance has been mixed and industry adoption slow.

Now a study published in Nature Communications identifies silicon contamination as the root cause of disappointing results and details how to produce higher performing, pure graphene.

The RMIT University team led by Dr Dorna Esrafilzadeh and Dr Rouhollah Ali Jalili inspected commercially-available graphene samples, atom by atom, with a state-of-art scanning transition electron microscope.

"We found high levels of silicon contamination in commercially available graphene, with massive impacts on the material's performance," Esrafilzadeh said.

Testing showed that silicon present in natural graphite, the raw material used to make graphene, was not being fully removed when processed.

"We believe this contamination is at the heart of many seemingly inconsistent reports on the properties of graphene and perhaps many other atomically thin two-dimensional (2D) materials ," Esrafilzadeh said.

"Graphene was billed as being transformative, but has so far failed to make a significant commercial impact, as have some similar 2D nanomaterials. Now we know why it has not been performing as promised, and what needs to be done to harness its full potential."

The testing not only identified these impurities but also demonstrated the major influence they have on performance, with contaminated material performing up to 50% worse when tested as electrodes.

"This level of inconsistency may have stymied the emergence of major industry applications for graphene-based systems. But it's also preventing the development of regulatory frameworks governing the implementation of such layered nanomaterials, which are destined to become the backbone of next-generation devices," she said.

The two-dimensional property of graphene sheeting, which is only one atom thick, makes it ideal for electricity storage and new sensor technologies that rely on high surface area.

This study reveals how that 2D property is also graphene's Achilles' heel, by making it so vulnerable to surface contamination, and underscores how important high purity graphite is for the production of more pure graphene.

Using pure graphene, researchers demonstrated how the material performed extraordinarily well when used to build a supercapacitator, a kind of super battery.

When tested, the device's capacity to hold electrical charge was massive. In fact, it was the biggest capacity so far recorded for graphene and within sight of the material's predicted theoretical capacity.

In collaboration with RMIT's Centre for Advanced Materials and Industrial Chemistry, the team then used pure graphene to build a versatile humidity sensor with the highest sensitivity and the lowest limit of detection ever reported.

These findings constitute a vital milestone for the complete understanding of atomically thin two-dimensional materials and their successful integration within high performance commercial devices.

"We hope this research will help to unlock the exciting potential of these materials."
-end-
The article "Silicon as a ubiquitous contaminant in graphene derivatives with significant impact on device performance" is published in Nature Communications: DOI: 10.1038/s41467-018-07396-3

RMIT University

Related Graphene Articles from Brightsurf:

How to stack graphene up to four layers
IBS research team reports a novel method to grow multi-layered, single-crystalline graphene with a selected stacking order in a wafer scale.

Graphene-Adsorbate van der Waals bonding memory inspires 'smart' graphene sensors
Electric field modulation of the graphene-adsorbate interaction induces unique van der Waals (vdW) bonding which were previously assumed to be randomized by thermal energy after the electric field is turned off.

Graphene: It is all about the toppings
The way graphene interacts with other materials depends on how these materials are brought into contact with the graphene.

Discovery of graphene switch
Researchers at Japan Advanced Institute of Science and Technology (JAIST) successfully developed the special in-situ transmission electron microscope technique to measure the current-voltage curve of graphene nanoribbon (GNR) with observing the edge structure and found that the electrical conductance of narrow GNRs with a zigzag edge structure abruptly increased above the critical bias voltage, indicating that which they are expected to be applied to switching devices, which are the smallest in the world.

New 'brick' for nanotechnology: Graphene Nanomesh
Researchers at Japan advanced institute of science and technology (JAIST) successfully fabricated suspended graphene nanomesh (GNM) by using the focused helium ion beam technology.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Graphene Flagship publishes handbook of graphene manufacturing
The EU-funded research project Graphene Flagship has published a comprehensive guide explaining how to produce and process graphene and related materials (GRMs).

How to induce magnetism in graphene
Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties.

Graphene: The more you bend it, the softer it gets
New research by engineers at the University of Illinois combines atomic-scale experimentation with computer modeling to determine how much energy it takes to bend multilayer graphene -- a question that has eluded scientists since graphene was first isolated.

How do you know it's perfect graphene?
Scientists at the US Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

Read More: Graphene News and Graphene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.