Nav: Home

New catalyst produces cheap hydrogen

November 29, 2018

Professor Anthony O'Mullane said the potential for the chemical storage of renewable energy in the form of hydrogen was being investigated around the world.

"The Australian Government is interested in developing a hydrogen export industry to export our abundant renewable energy," said Professor O'Mullane from QUT's Science and Engineering Faculty.

"In principle, hydrogen offers a way to store clean energy at a scale that is required to make the rollout of large-scale solar and wind farms as well as the export of green energy viable.

"However, current methods that use carbon sources to produce hydrogen emit carbon dioxide, a greenhouse gas that mitigates the benefits of using renewable energy from the sun and wind.

"Electrochemical water splitting driven by electricity sourced from renewable energy technology has been identified as one of the most sustainable methods of producing high-purity hydrogen."

Professor O'Mullane said the new composite material he and PhD student Ummul Sultana had developed enabled electrochemical water splitting into hydrogen and oxygen using cheap and readily available elements as catalysts.

"Traditionally, catalysts for splitting water involve expensive precious metals such as iridium oxide, ruthenium oxide and platinum," he said.

"An additional problem has been stability, especially for the oxygen evolution part of the process.

"What we have found is that we can use two earth-abundant cheaper alternatives - cobalt and nickel oxide with only a fraction of gold nanoparticles - to create a stable bi-functional catalyst to split water and produce hydrogen without emissions.

"From an industry point of view, it makes a lot of sense to use one catalyst material instead of two different catalysts to produce hydrogen from water."

Professor O'Mullane said the stored hydrogen could then be used in fuel cells.

"Fuel cells are a mature technology, already being rolled out in many makes of vehicle. They use hydrogen and oxygen as fuels to generate electricity - essentially the opposite of water splitting.

"With a lot of cheaply 'made' hydrogen we can feed fuel cell-generated electricity back into the grid when required during peak demand or power our transportation system and the only thing emitted is water."
-end-
"Gold Doping in a Layered Co-Ni Hydroxide System via Galvanic Replacement for Overall Electrochemical" was published in Advanced Functional Materials.

Queensland University of Technology

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".