Interfacial electronic state improving hydrogen storage capacity in Pd-MOF materials

November 29, 2018

NIMS, Kyushu University and Kyoto University jointly identified a mechanism by which a hybrid material composed of palladium (Pd) and metal-organic frameworks (MOFs) is capable of storing approximately twice as much hydrogen as a material composed solely of Pd. The greater hydrogen storage capacity of the hybrid material is associated with a slight change in its electronic state caused by the transfer of an electric charge--amounting to approximately 0.4 electrons--from the Pd to the MOFs. The joint research team therefore successfully determined the quantitative relationships between the materials' electronic states and their hydrogen storage properties. These findings may facilitate the development of new hybrid materials with superior hydrogen storage properties or with the capability to efficiently catalyze hydrogenation reactions.

Hydrogen is a viable next-generation energy source. Widespread use of hydrogen will require efficient hydrogen storage methods. Transition metals, such as Pd, are known to possess excellent hydrogen storage properties. Recent reports indicated that the hydrogen storage capabilities of materials composed of transition metal nanoparticles and MOFs are significantly higher than those of materials composed solely of a transition metal. It had been predicted that these increased hydrogen storage capabilities are associated with the transfer of electric charge at the interface between the transition metals and the MOFs. However, the mechanisms responsible for the increased hydrogen storage capabilities were not quantitatively understood (e.g., the amount of charge transferred).

We investigated the electronic state of a hybrid material, Pd@HKUST-1, which is composed of Pd nanocubes and MOFs (specifically, copper(II) 1, 3, 5-benzenetricarboxylate, or HKUST-1) and capable of storing approximately twice the amount of hydrogen of materials composed solely of Pd nanocubes. For this investigation, we used NIMS's synchrotron X-ray beamline at SPring-8, the world's largest synchrotron radiation facility. In addition, we calculated the electronic states of Pd and HKUST-1 separately and compared them with the electronic state of Pd@HKUST-1. As a result, we found that an electric charge amounting to approximately 0.4 electrons had been transferred from the Pd nanocubes to the MOFs. This small charge transfer presumably enabled the electron bands in the Pd nanocubes to store more hydrogen, resulting in approximately doubled hydrogen storage capacity for the hybrid material compared to a material composed solely of Pd nanocubes.

Hybrid materials composed of transition metal nanoparticles and MOFs are potentially capable not only of storing large amounts of hydrogen but also of efficiently catalyzing hydrogenation reactions. The methods developed and used in this study to measure and analyze electronic states may accelerate the development of new hybrid materials with greatly increased hydrogen storage and catalytic capabilities.
This project was carried out by a research team led by Osami Sakata (Leader of the Synchrotron X-ray Group, Research Center for Advanced Measurement and Characterization, NIMS), Yanna Chen (Postdoctoral Researcher, NIMS), Michihisa Koyama (Professor, Inaromi Frontier Research Center, Kyushu University; currently a Unit Director, Center for Green Research on Energy and Environmental Materials, NIMS), Yusuke Nanba (Post-doctoral Fellow, Kyushu University; currently a Postdoctoral Researcher, NIMS), Hiroshi Kitagawa (Professor, Graduate School of Science, Kyoto University) and Hirokazu Kobayashi (Cooperative Associate Professor, Graduate School of Science, Kyoto University; also a JST PRESTO Researcher directing a "hyper-nano-space design" project supervised by Professor Kazuyuki Kuroda).

This study was supported by the MEXT Nanotechnology Platform Japan program and JST's ACCEL project entitled "Creation of the functional materials on the basis of the inter-element-fusion strategy and their innovative applications" (grant number: JPMJAC1501, Research Director: Hiroshi Kitagawa, Program Manager: Akihiro Okabe).

This research was published in Communications Chemistry on October 9, 2018, GMT (on the same date Japan Time).


(Regarding this research)

Osami Sakata
Group Leader,
Synchrotron X-ray Group,
Research Center for Advanced Measurement and Characterization,
Station Director,
Synchrotron X-ray Station at Spring-8,
National Institute for Materials Science
TEL: +81-791-58-1970

(Please change "=" to "@")

(Regarding samples)

Hiroshi Kitagawa
Graduate School of Science, Kyoto University
Hirokazu Kobayashi,
Cooperative Associate Professor,
Graduate School of Science, Kyoto University
TEL: +81-75-753-4035
(Please change "=" to "@")

(Regarding theoretical calculation)

INAMORI Frontier Research Center, Kyushu University
Unit Director,
Technology Integration Unit,
Global Research Center for Environment and Energy based on Nanomaterials Science,
National Institute for Materials Science

(Regarding JST)

Daichi Terashita
JST Strategic Basic Research Program,
TEL: +81-3-6380-9130

(For general inquiries)

Public Relations Office
National Institute for Materials Sciences
Tel: +81-29-859-2026
Fax: +81-29-859-2017
(Please change "=" to "@")

Kyoto University
Tel: +81-75-753-5729
Fax: +81-75-753-2094
(Please change "=" to "@")

Kyushu University
TEL : +81-92-802-2130
FAX : +81-92-802-2139
(Please change "=" to "@")

Japan Science and Technology Agency (JST)
TEL: +81-3-5214-8404
FAX: +81-3-5214-8432
(Please change "=" to "@")

National Institute for Materials Science, Japan

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to