Decoding sleeping sickness signals could aid quest for treatments

November 29, 2018

Key insights into how the parasites behind sleeping sickness boost their ability to spread could aid efforts to beat the disease.

The finding resolves a decades-long puzzle about the behaviour of the parasites, which are spread by the bite of the tsetse fly, and cause disease in people and animals.

Researchers studied how parasites in the bloodstream send chemical signals to one another to undergo a physical change that is needed for them to spread disease.

Scientists have pinpointed details of the signal that enables parasites to change from a form in which they can quickly boost their numbers, to one that is more suited to aiding their transmission and survival in flies.

Scientists led by the University of Edinburgh found that the parasites release enzymes, called peptidases, which break down proteins in the blood into smaller molecules.

These small molecules, known as oligopeptides, are sensed by a protein - GPR89 - which is found on the surface of the parasite. This triggers the parasites' transition into a state in which they can be taken up and transmitted by flies.

Oligopeptides also act as nutrients for the parasites and are taken up by the same surface protein.

Disrupting this process by designing drugs that interfere with the GPR89 protein could offer a new way of tackling the disease, the team suggests.

The approach could limit drug resistance in two ways - by restricting the supply of nutrients and stopping transition to the state required for disease to spread, researchers say.

Researchers also suggest that the parasites could be disarmed by an artificial form of the signalling molecule. This would trick the parasites into prematurely arresting their growth.

The study, published in Cell, was carried out in collaboration with the University of St Andrews and was funded by Wellcome.

Professor Keith Matthews, of the School of Biological Sciences, who led the study, said: "Understanding how these parasites communicate with each other has been a mystery for decades. The mechanism we have discovered provides new opportunities to develop much-needed drugs for this devastating disease."

Mike Turner, Head of Infection and Immunobiology at Wellcome, said: "This study solves one of the most fundamental questions about the sleeping sickness parasite and will help researchers around the world look for new ways to limit the severity of the disease.

"This ability of the sleeping sickness parasite to regulate how they switch between states so that they can be transmitted by tsetse flies was first described in 1972 and since then many groups have failed to solve it until this beautiful study by Professor Matthews' group."
-end-


University of Edinburgh

Related Parasites Articles from Brightsurf:

When malaria parasites trick liver cells to let themselves in
A new study led by Maria Manuel Mota, group leader at Instituto de Medicina Molecular, now shows that malaria parasites secrete the protein EXP2 that is required for their entry into hepatocytes.

How deadly parasites 'glide' into human cells
A group of scientists led by EMBL Hamburg's Christian Löw provide insights into the molecular structure of proteins involved in the gliding movements through which the parasites causing malaria and toxoplasmosis invade human cells.

How malaria parasites withstand a fever's heat
The parasites that cause 200 million cases of malaria each year can withstand feverish temperatures that make their human hosts miserable.

New studies show how to save parasites and why it's important
An international group of scientists published a paper, Aug. 1, 2020, in a special edition of the journal Biological Conservation that lays out an ambitious global conservation plan for parasites.

More flowers and pollinator diversity could help protect bees from parasites
Having more flowers and maintaining diverse bee communities could help reduce the spread of bee parasites, according to a new study.

How Toxoplasma parasites glide so swiftly (video)
If you're a cat owner, you might have heard of Toxoplasma gondii, a protozoan that sometimes infects humans through contact with contaminated feces in litterboxes.

Parasites and the microbiome
In a study of ethnically diverse people from Cameroon, the presence of a parasite infection was closely linked to the make-up of the gastrointestinal microbiome, according to a research team led by Penn scientists.

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Feeding bluebirds helps fend off parasites
If you feed the birds in your backyard, you may be doing more than just making sure they have a source of food: you may be helping baby birds give parasites the boot.

Scientists discover how malaria parasites import sugar
Researchers at Stockholm University has established how sugar is taken up by the malaria parasite, a discovery with the potential to improve the development of antimalarial drugs.

Read More: Parasites News and Parasites Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.