Nav: Home

Stop -- hey, what's that sound?

November 29, 2018

You're walking along a busy city street. All around you are the sounds of subway trains, traffic, and music coming from storefronts. Suddenly, you realize one of the sounds you're hearing is someone speaking, and that you are listening in a different way as you pay attention to what they are saying.

How does the brain do this? And how quickly does it happen? Researchers at the University of Maryland are learning more about the automatic process the brain goes through when it picks up on spoken language.

Neuroscientists have understood for some time that when we hear sounds of understandable language our brains react differently than they do when we hear non-speech sounds or people talking in languages we do not know. When we hear someone talking in a familiar language, our brain quickly shifts to pay attention, process the speech sounds by turning them into words, and understand what is being said.

In a new paper published in the Cell Press/Elsevier journal Current Biology, "Rapid transformation from auditory to linguistic representations of continuous speech," Maryland researchers were able to see where in the brain, and how quickly - in milliseconds - the brain's neurons transition from processing the sound of speech to processing the language-based words of the speech.

The paper was written by Institute for Systems Research (ISR) Postdoctoral Researcher Christian Brodbeck, L. Elliot Hong of the University of Maryland School of Medicine, and Professor Jonathan Z. Simon, who has a triple appointment in the Departments of Biology and Electrical and Computer Engineering as well as ISR.

"When we listen to someone talking, the change in our brain's processing from not caring what kind of sound it is to recognizing it as a word happens surprisingly early," said Simon. "In fact, this happens pretty much as soon as the linguistic information becomes available."

When it is engaging in speech perception, the brain's auditory cortex analyzes complex acoustic patterns to detect words that carry a linguistic message. It seems to do this so efficiently, at least in part, by anticipating what it is likely to hear: by learning what sounds signal language most frequently, the brain can predict what may come next. It is generally thought that this process--localized bilaterally in the brain's superior temporal lobes--involves recognizing an intermediate, phonetic level of sound.

In the Maryland study, the researchers mapped and analyzed participants' neural brain activity while listening to a single talker telling a story. They used magnetoencephalography (MEG), a common non-invasive neuroimaging method that employs very sensitive magnetometers to record the naturally occurring magnetic fields produced by electrical currents inside the brain. The subject typically sits under or lies down inside the MEG scanner, which resembles a whole-head hair drier, but contains an array of magnetic sensors.

The study showed that the brain quickly recognizes the phonetic sounds that make up syllables and transitions from processing merely acoustic to linguistic information in a highly specialized and automated way. The brain has to keep up with people speaking at a rate of about three words a second. It achieves this, in part, by distinguishing speech from other kinds of sound in about a tenth of a second after the sound enters the ears.

"We usually think that what the brain processes this early must be only at the level of sound, without regard for language," Simon notes. "But if the brain can take knowledge of language into account right away, it would actually process sound more accurately. In our study we see that the brain takes advantage of language processing at the very earliest stage it can."

In another part of the study, the researchers found that people selectively process speech sounds in noisy environments.

Here, participants heard a mixture of two speakers in a "cocktail party" scenario, and were told to listen to one and ignore the other. The participants' brains only consistently processed language for the conversation to which they were told to pay attention, not the one they were told to ignore. Their brains stopped processing unattended speech at the level of detecting word forms.

"This may reveal a 'bottleneck' in our brains' speech perception," Brodbeck says. "We think lexical perception works by our brain considering the match between the incoming speech signal and many different words at the same time. It could be that this mechanism involves mental resources that have limitations on how many different options can be tried simultaneously, making it impossible to attend to more than one speaker at the same time."

This study lays the foundation for additional research into how our brains interpret sounds as words. For example, how and when does the brain decide which word is being said? There is evidence that the brain actually sifts through possibilities, but it is currently unknown how the brain successfully narrows down the choices to a single word and connects it with the meaning of the ongoing discourse. Also, since it is possible to measure what fraction of the speech sounds are clear enough to be processed as being components of words, the researchers may be able to test listening comprehension when subjects can't, or don't understand how to, report it properly.
-end-


University of Maryland

Related Language Articles:

Why the language-ready brain is so complex
In a review article published in Science, Peter Hagoort, professor of Cognitive Neuroscience at Radboud University and director of the Max Planck Institute for Psycholinguistics, argues for a new model of language, involving the interaction of multiple brain networks.
Do as i say: Translating language into movement
Researchers at Carnegie Mellon University have developed a computer model that can translate text describing physical movements directly into simple computer-generated animations, a first step toward someday generating movies directly from scripts.
Learning language
When it comes to learning a language, the left side of the brain has traditionally been considered the hub of language processing.
Learning a second alphabet for a first language
A part of the brain that maps letters to sounds can acquire a second, visually distinct alphabet for the same language, according to a study of English speakers published in eNeuro.
Sign language reveals the hidden logical structure, and limitations, of spoken language
Sign languages can help reveal hidden aspects of the logical structure of spoken language, but they also highlight its limitations because speech lacks the rich iconic resources that sign language uses on top of its sophisticated grammar.
Lying in a foreign language is easier
It is not easy to tell when someone is lying.
American sign language and English language learners: New linguistic research supports the need for policy changes
A new study of the educational needs of students who are native users of American Sign Language (ASL) shows glaring disparities in their treatment by the U.S Department of Education.
The language of facial expressions
University of Miami Psychology Professor Daniel Messinger collaborated with researchers at Western University in Canada to show that our brains are pre-wired to perceive wrinkles around the eyes as conveying more intense and sincere emotions.
The universal language of hormones
Bioinformatics specialists from the University of W├╝rzburg have studied a specific class of hormones which is relevant for plants, bacteria and indirectly for humans, too.
Stretching language to its limit
A disregard for human traditions, the brutality of predation, sacrifice, and sexual desire are ingrained in languages across cultures.
More Language News and Language Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.