Nav: Home

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability

November 29, 2019

Perovskite nanocrystals hold promise for improving a wide variety of optoelectronic devices - from lasers to light emitting diodes (LEDs) - but problems with their durability still limit the material's broad commercial use.

Researchers at the Georgia Institute of Technology have demonstrated a novel approach aimed at addressing the material's durability problem: encasing the perovskite inside a double-layer protection system made from plastic and silica.

In a study published Nov. 29 in the journal Science Advances, the research team describes a multistep process to produce encased perovskite nanocrystals that exhibit strong resistance to degradation in moist environments.

"Perovskite nanocrystals are highly susceptible to degradation, particularly when they come into contact with water," said Zhiqun Lin, a professor in the Georgia Tech School of Materials Science and Engineering. "This dual-shelled system offers two layers of protection while allowing each nanocrystal to remain a distinct and separate unit, achieving the maximum amount of surface area and other physical characteristics of the perovskite needed for optimizing optoelectronic applications."

The term perovskite refers to the crystal structure of the material, which is generally composed of three parts: two cations of different sizes and an anion in between. For decades, researchers have tested substituting various chemicals into the structure to achieve unique characteristics. In particular, perovskites containing halide compounds such as bromide and iodine can act as light absorbers and emitters.

For this study, which was supported by the Air Force Office of Scientific Research, the National Science Foundation, the Defense Threat Reduction Agency, and the Department of Energy, Lin's group worked with one of the most common halide configurations, which is formed from methylammonium, lead, and bromide.

Their process involves first forming star-shaped plastic molecules that could serve as "nanoreactors" by growing 21 polymer arms on a simple sugar molecule. Then, once precursor chemicals for the silica and perovskite nanocrystals are loaded onto the plastic molecule, several stages of chemical reactions produce the final system.

After the star-shaped plastic has played its role as a nanoreactor, the star-shaped components remain permanently attached, almost like hair, to the silica, which encases the perovskite. The hairs then serve as the first layer of protection, repelling water and preventing the nanocrystals from clumping together. The subsequent layer of silica adds further protection should any water get past the water-repelling plastic hair.

"Synthesis and applications of perovskite nanocrystals have been a rapidly evolving research field over the past five years," said Yanjie He, a coauthor of the paper and former graduate student at Georgia Tech. "Our strategy, based on a judiciously designed star-shaped plastic as a nanoreactor, enables unprecedented control in the crafting of high-quality perovskite nanocrystals with complex architecture, which is inaccessible in conventional approaches."

To test the material, the researchers coated glass substrates with a thin film of the encapsulated perovskites and conducted several stress tests, including immersing the entire sample in deionized water. By shining ultraviolet light upon the sample, they found that the photoluminescent properties of the perovskites never diminished during a 30-minute test. For comparison, the researchers also immersed unencapsulated perovskites in water and watched as their photoluminescence vanished in a matter of seconds.

Lin said the new method unlocks the possibility of tuning the surface characteristics of the dual-shelled nanocrystal to enhance its performance in a greater range of applications. The process of fabricating the new perovskite nanocrystals from the star-shaped plastic was also unique in that it employed low-boiling point solvents with low toxicity. Future research may center on developing different perovskite nanocrystal systems, including all-inorganic perovskites, double perovskites, and doped perovskites.

"We envision that this type of perovskite nanocrystal will prove very useful for creating durable optoelectronic devices for bioimaging, biosensors, photonic sensors, and radiation detection, as well as next generation LEDs, lasers, and scintillators," Lin said. "This is because these hairy perovskite nanocrystals carry unique advantages, including high defect tolerance, narrower emission bands, and high scintillation efficiency."
-end-
This research was supported by the National Science Foundation (NSF) under grant Nos. CMMI 1727313, CMMI 1914713, CBET 1803495, Air Force Office of Scientific Research under grant No. FA9550-19-1-0317, the Defense Threat Reduction Agency under grant No. HDTRA1-18-1-0004, and the U.S. Department of Energy under grant Nos. DE-SC0018611 and DE-FG02-90ER46604. The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsoring organizations.

CITATION: Yanjie He, Young Jun Yoon, Yeu Wei Harn, Gill V. Biesold-McGee, Shuang Liang, Chun Hao Lin, Vladimir V. Tsukruk, Naresh Thadhani, Zhitao Kang, and Zhiqun Lin, "Unconventional route to dual-shelled organolead halide perovskite nanocrystals with controlled dimensions, surface chemistry, and stabilities" (Science Advances, November 2019). http://dx.doi.org/10.1126/sciadv.aax4424

Georgia Institute of Technology

Related Nanocrystals Articles:

Ultrafast stimulated emission microscopy of single nanocrystals in Science
ICFO researchers report on a new ultrafast stimulated emission microscopy technique that allows imaging of nano-objects and investigating their dynamics.
Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability
Researchers at the Georgia Institute of Technology have demonstrated a novel approach aimed at addressing the perovskite's durability problem: encasing the perovskite inside a double-layer protection system made from plastic and silica.
Balancing elementary steps for boosting alkaline hydrogen evolution
Recently, Professors Jin-Song Hu and Li-Jun Wan from Institute of Chemistry, Chinese Academy of Sciences and their collaborators designed the nanocrystals with tunable Ni/NiO heterosurfaces to target Volmer and Heyrovsky/Tafel steps in the alkaline hydrogen evolution reaction (HER) and discovered that such bicomponent active sites on the surface should be balanced for promoting HER performance.
Single-particle spectroscopy of CsPbBr3 perovskite reveals the origin low electrolumine
Researchers from Tokyo Institute of Technology (Tokyo Tech) used the method of single-particle spectroscopy to study electroluminescence in light-emitting devices.
University of Konstanz researchers create uniform-shape polymer nanocrystals
Researchers from the University of Konstanz's Collaborative Research Centre (CRC) 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' successfully generate uniform-shape nanocrystals using direct polymerization
Understanding the (ultra-small) structure of silicon nanocrystals
New research provides insight into the structure of silicon nanocrystals, a substance that promises to provide efficient lithium ion batteries that power your phone to medical imaging on the nanoscale.
Squeezed nanocrystals: A new model predicts their shape when blanketed under graphene
In a collaboration between the US Department of Energy's Ames Laboratory and Northeastern University, scientists have developed a model for predicting the shape of metal nanocrystals or 'islands' sandwiched between or below two-dimensional (2D) materials such as graphene.
Invention by NUS chemists opens the door to safer and less expensive X-ray imaging
Professor Liu Xiaogang from the National University of Singapore led a team to develop novel lead halide perovskite nanocrystals that are highly sensitive to X-ray irradiation.
Hidden gapless states on the path to semiconductor nanocrystals
When chemists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw were starting work on yet another material designed for the efficient production of nanocrystalline zinc oxide, they didn't expect any surprises.
Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again
A team led by scientists at Berkeley Lab found a way to make a liquid-like state behave more like a solid, and then to reverse the process.
More Nanocrystals News and Nanocrystals Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.