New evolutionary insights into the early development of songbirds

November 29, 2019

An international team led by Alexander Suh at Uppsala University has sequenced a chromosome in zebra finches called the germline-restricted chromosome (GRC). This chromosome is only found in germline cells, the cells that hold genetic information which is passed on to the next generation. The researchers found that the GRC is tens of millions of years old and plays a key role in songbird biology, having collected genes used for embryonic development.

The ability to reproduce is a fundamental trait of all life. How reproduction has evolved and how it functions on a genetic level is therefore of great interest to evolutionary biologists. During the early development of an animal embryo, cells are divided into two major types, germline and somatic cells. Germline cells are present in the reproductive organs and hold genetic information which is passed on to the next generation, whereas somatic cells are the cells which make up the rest of the organism. Biologists have discovered that in some organisms, certain genes and repetitive DNA-sequences are eliminated when cells become either somatic or germline, which means that not all cells in an organism contain the same genome.

In certain species, entire chromosomes are specific to the germline. One such chromosome in zebra finches is called the germline restricted chromosome (GRC). For the first time, an international team led by Alexander Suh at the Department of Ecology and Genetics at Uppsala University has performed a comprehensive genomic, transcriptomic, and proteomic analysis of the GRC in zebra finches. The GRC is the largest chromosome in the zebra finch genome and constitutes more than 10 percent of the genome.

"The GRC is a very strange chromosome. We found that some of its genes are repeated tens or even hundreds of times, whereas the somatic cells have only one gene copy." says Cormac Kinsella, one of the first authors of the study.

By identifying specific genes and comparing them with genomic data from other species, the scientists could unravel the evolutionary history of the GRC. The results showed that the GRC is tens of millions of years old and likely present across all songbird species, which represent half of all bird species. The scientists also think that the GRC became an important factor in bird development because many genes associated with early embryonic development are found there. Because the GRC is not present in somatic cells, expression of its genes only affects germline cells thereby protecting somatic cells from possible negative effects.

"Because we found GRC expression on the RNA and protein level, we expect our evidence for selection acting on the GRC to become the starting point of further exciting discoveries." says Francisco Ruiz-Ruano, the other first author of the study.
-end-


Uppsala University

Related Chromosome Articles from Brightsurf:

The bull Y chromosome has evolved to bully its way into gametes
In a new study, published Nov. 18 in the journal Genome Research, scientists in the lab of Whitehead Institute Member David Page present the first ever full, high-resolution sequence of the Y chromosome of a Hereford bull.

Evolution of the Y chromosome in great apes deciphered
New analysis of the DNA sequence of the male-specific Y chromosomes from all living species of the great ape family helps to clarify our understanding of how this enigmatic chromosome evolved.

The male Y chromosome does more than we thought
While the Y chromosome's role was believed to be limited to the functions of the sexual organs, an University of Montreal's scientist has shown that it impacts the functions of other organs as well.

The birth of a male sex chromosome in Atlantic herring
The evolution of sex chromosomes is of crucial importance in biology as it stabilises the mechanism underlying sex determination and usually results in an equal sex ratio.

Why the 'wimpy' Y chromosome hasn't evolved out of existence
The Y chromosome has shrunken drastically over 200 million years of evolution.

Novel insight into chromosome 21 and its effect on Down syndrome
A UCL-led research team has, for the first time, identified specific regions of chromosome 21, which cause memory and decision-making problems in mice with Down syndrome, a finding that provides valuable new insight into the condition in humans.

Breakthrough in sex-chromosome regulation
Researchers at Karolinska Institutet in Sweden have uncovered a chromosome-wide mechanism that keeps the gene expression of sex chromosomes in balance in our cells.

B chromosome first -- mechanisms behind the drive of B chromosomes uncovered
B chromosomes are supernumerary chromosomes, which often are preferentially inherited and showcase an increased transmission rate.

Unveiling disease-causing genetic changes in chromosome 17
Extensive single Watson-Crick base pair mutations can occur in addition to duplication or deletion of an entire group of genes on chromosomal region 17p11.2.

What causes rats without a Y chromosome to become male?
A look at the brains of an endangered spiny rat off the coast of Japan by University of Missouri (MU) Bond Life Sciences Center scientist Cheryl Rosenfeld could illuminate the subtle genetic influences that stimulate a mammal's cells to develop as male versus female in the absence of a Y chromosome.

Read More: Chromosome News and Chromosome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.