Stem cells, forged into neurons, show promise for brain repair

November 30, 2001

MADISON - In a set of meticulous experiments, scientists have demonstrated the ability of human embryonic stem cells to develop into nascent brain cells and, seeded into the intact brains of baby mice, further develop into healthy, functioning neural cells.

In a paper published in the journal Nature Biotechnology (December, 2001), a team of scientists from the University of Wisconsin-Madison, along with colleagues from the University of Bonn Medical Center, show that the blank-slate stem cells taken from early human embryos can, in a laboratory dish, be guided down the developmental pathway to becoming precursor brain cells.

Transplanted into the brains of baby mice, the precursor cells subsequently showed their ability to further differentiate into neurons and astrocytes, the cell species that populate the different regions of the brain and spinal cord.

The work represents a critical step toward a high-stakes payoff for human embryonic stem cell technology - an inexhaustible supply of transplantable neural cells and tissue to repair everything from spinal cord injuries to the ravages of Parkinson's disease. The new work was conducted largely at the WiCell Institute in Madison, Wis., and is now being continued at the UW-Madison Waisman Center.

"This is a very important step. The cells work" as they should, says Su-Chun Zhang, a UW-Madison professor of anatomy and neurology and the lead author of the Nature Biotechnology paper. Co-authors include James A. Thomson and Ian D. Duncan, also of UW-Madison, and Marius Wernig and Oliver Brustle of the University of Bonn Medical Center.

The newly published work is critically important for two reasons: One, it establishes the fact that human embryonic stem cells can be guided down the developmental pathway to becoming brain cells and, two, it shows that they can be transplanted into animals and further develop into the more specific types of cells necessary for normal brain function.

"The neuron that we're seeing after transplant is almost identical to what the neuron should be in the healthy brain," says Zhang. "These are the cells that will be used, ultimately, to treat Parkinson's and other central nervous system disorders."

The human stem cells were transplanted into the brains of newborn mice to co-opt the developmental cues that occur as the animal grows and the brain develops.

"These transplanted cells had no experience in the brain, and we wanted to see if they would mirror the development of the mouse brain," Zhang says. "And they do."

Zhang stressed that the work, in essence, is a demonstration of a system for directing the cells to become the specific types of cells needed for repairing the damaged or ailing brain. Key steps yet to be performed before the technology can be attempted in humans is to assess function and actually treat a condition such as Parkinson's in an animal model such as primates.

"We are nowhere near clinical application," Zhang says. "It will still be some years before we can even try this in people."

However, the new work is strong evidence that human stem cell therapies are likely to live up to their billing as revolutionary treatments for a host of heretofore intractable cell-based diseases.

Moreover, the work performed by Zhang and his colleagues exhibited an important ancillary result: the complete absence of teratomas or tumors in the mice that received the cell transplants. Of concern in any potential stem cell therapy is that tumors may arise from contamination of precursor cells by undifferentiated cells.

"We put a lot of cells, in one instance half-a-million, in a mouse," says Zhang. "The more cells you put in, the more likely you are to have a tumor. The absence of tumors shows our methods for purifying the precursor cells are pretty good."
Support for the study was provided by the Myelin Project of Washington, D.C. and the Consolidated Anti-Aging Foundation of Naples, Fla.

Terry Devitt (608) 262-8282,

University of Wisconsin-Madison

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to