Novel AT2R gene transfer prevents hypertension-related enlarged heart, cardiac fibrosis

November 30, 2004

BETHESDA, Md. (Nov. 30, 2004) - Using a novel vector delivery system researchers at the University of Florida designed a "nifty, seemingly simple idea" that turned out to produce significant results in terms of preventing enlargement and hardening of the heart associated with hypertension.

The study goes a long way in learning how hypertension develops as well how genes can be targeted and regulated within specific organs. Because the procedure didn't simultaneously reduce blood pressure, the approach could also have therapeutic application in treating heart failure and heart attacks, according to a paper in Physiological Genomics, published online by the American Physiological Society.

The clinical importance of hypertension was highlighted by Dr. Claude Lenfant, former director of the National Heart, Lung, and Blood Institute (NHLBI), when he announced the latest report on hypertension last year. Lenfant said: "Americans' lifetime risk of developing hypertension is much greater than we'd thought. For instance, those who do not have hypertension at age 55 have a 90% risk of going on to develop the condition."

The current Florida study started with a straightforward goal: "to determine whether the angiotensin II type 2 receptor (AT2R) influences cardiac hypertrophy (enlargement) and myocardial and perivascular fibrosis." The results were quite striking, according to the laboratory leader, Dr. Mohan K. Raizada: "The procedure prevented the heart from enlarging and prevented thickening of the ventricular walls. It also prevented the formation of fibrosis - an extracellular matrix like collagen -- that makes it harder for the heart to pump."

Without AT2R protection, left ventricular wall thickness (LVWT) increased 123% and the heart weight to body weight ratio (measuring overall "enlargement") rose 129%. At the same time, myocardial fibrosis rose 300% and perivascular fibrosis rose 158%.

AT2R protection sharply reduces most hypertensive indicators

However, when protected by AT2R through cardiac transduction LVWT was 85% lower, HW/BW was 91% and myocardial fibrosis was 43% lower after a two-week infusion of angiotensin II (AT2), which induced hypertension.

These marked effects of AT2R may have clinical importance for hypertension and other cardiovascular diseases as well methodological implications for gene and cellular therapies of all sorts.

Lead author Beverly L. Falcón notes that the research used "normal" rats so that the beneficial outcomes to the heart were totally due to the AT2R procedure rather than any possible inherent genetic influences. Thus, "this present model is physiologically more relevant human disease because cardiac hypertrophy is dependent on the RAS (renin-angiotensin system) without the confounding genetic determinants associated with the SHR," or spontaneously hypertensive rat, used in other studies.

Lentiviral vector enables targeted delivery; 100% transduction not necessary

The study utilized a lentiviral vector to deliver and enable overexpression of AT2R in the heart on a long term basis. The paper notes that AT2R was predominantly overexpressed in the heart. Furthermore, "all of these effects were seen despite limited transduction of cardiac tissue." In addition, the authors note, "this present study demonstrates a significant level of AT2R expression in cardiac tissue, although the expression was not uniformly distributed throughout the tissue. "Despite this, we observed dramatic cardioprotective effects," they added.

Raizada said that "from a cell therapy viewpoint, this is fascinating that you don't need to transduce all the cardiac cells to observe global beneficial effects on the heart. In this case only 30-40% was transduced and it appears that this amount is sufficient. What this suggests is that there's some cellular communication among cardiac cells that 'tells' the rest of the heart to conform."

On the pathology level, Falcón said that while the AT2R prevented hypertrophy and fibrosis of the heart, the perivascular fibrosis (around peripheral blood vessels) was not reduced, nor was blood pressure. On a clinical level this may seem a negative result, but Raizada noted that "we were targeting the gene to only affect the heart, so not influencing blood pressure is a good thing. Even better, is that in heart failure, you may or not have high blood pressure present, so this is very good: to be able to affect the heart, without affecting the vasculature."

Next steps: The results and methodology of the study could lead in many directions, Falcón and Raizada agreed. Among them are:
  1. To confirm whether AT2R cardioprotective effects are at the local RAS level.

  2. To determine if AT2R is the right gene that will give the most beneficial effect, or if there are other candidates such as the recently identified ACE2, a gene that expresses beneficial peptides.

  3. To determine if AT2R provides cardioprotective effects against heart failure and/or myocardial infarction (heart attack).

  4. To see if the lentiviral vector system "can be used to drive AT2R expression with specific promoters, such as oxygen-sensitive response elements to investigate the role of this receptor in ischemia-induced heart damage."

  5. To try and find a system of controlling, at will, gene expression.
Source and funding: The study, "Angiotensin II type 2 receptor gene transfer elicits cardioprotective effects in an angiotensin II infusion rat model of hypertension," appears online in Physiological Genomics, published by the American Physiological Society.

The study was written by Beverly L. Falcón, Jillian M. Stewart, Glenn Walter, Colin Sumners and Mohan K. Raizada of the Department of Physiology and Functional Genomics, College of Medicine and the Evelyn F. and William L. McKnight Brain Institute, University of Florida, Gainesville; Michael J. Katovich from the Dept. of Pharmacodynamics at Florida's College of Pharmacy; and Erick Bourassa and Robert C. Speth from the Dept. of Pharmacology, School of Pharmacy, University of Mississippi, University, Miss.

Research was supported by NHLBI grants HL-56921 and HL-68085. Lead author Falcón was a predoctoral fellow of the American Heart Association Florida/Puerto Rico affiliate; she is now doing postdoctoral work at the University of California at San Francisco Dept. of Anatomy and the Cardiovascular Research Institute.

Editor's note: A copy of the research paper by Falcón et al. is available to the media. Members of the media are encouraged to obtain an electronic version and to interview members of the research team. To do so, please contact Mayer Resnick at the American Physiological Society, 301-634-7209, cell 301-332-4402 or

The American Physiological Society was founded in 1887 to foster basic and applied bioscience. The Bethesda, Maryland-based society has more than 10,000 members and publishes 14 peer-reviewed journals containing almost 4,000 articles annually.

APS provides a wide range of research, educational and career support and programming to further the contributions of physiology to understanding the mechanisms of diseased and healthy states.

In May, APS received the Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring (PAESMEM).

American Physiological Society

Related Heart Failure Articles from Brightsurf:

Top Science Tip Sheet on heart failure, heart muscle cells, heart attack and atrial fibrillation results
Newly discovered pathway may have potential for treating heart failure - New research model helps predict heart muscle cells' impact on heart function after injury - New mass spectrometry approach generates libraries of glycans in human heart tissue - Understanding heart damage after heart attack and treatment may provide clues for prevention - Understanding atrial fibrillation's effects on heart cells may help find treatments - New research may lead to therapy for heart failure caused by ICI cancer medication

Machining the heart: New predictor for helping to beat chronic heart failure
Researchers from Kanazawa University have used machine learning to predict which classes of chronic heart failure patients are most likely to experience heart failure death, and which are most likely to develop an arrhythmic death or sudden cardiac death.

Heart attacks, heart failure, stroke: COVID-19's dangerous cardiovascular complications
A new guide from emergency medicine doctors details the potentially deadly cardiovascular complications COVID-19 can cause.

Autoimmunity-associated heart dilation tied to heart-failure risk in type 1 diabetes
In people with type 1 diabetes without known cardiovascular disease, the presence of autoantibodies against heart muscle proteins was associated with cardiac magnetic resonance (CMR) imaging evidence of increased volume of the left ventricle (the heart's main pumping chamber), increased muscle mass, and reduced pumping function (ejection fraction), features that are associated with higher risk of failure in the general population

Transcendental Meditation prevents abnormal enlargement of the heart, reduces chronic heart failure
A randomized controlled study recently published in the Hypertension issue of Ethnicity & Disease found the Transcendental Meditation (TM) technique helps prevent abnormal enlargement of the heart compared to health education (HE) controls.

Beta blocker use identified as hospitalization risk factor in 'stiff heart' heart failure
A new study links the use of beta-blockers to heart failure hospitalizations among those with the common 'stiff heart' heart failure subtype.

Type 2 diabetes may affect heart structure and increase complications and death among heart failure patients of Asian ethnicity
The combination of heart failure and Type 2 diabetes can lead to structural changes in the heart, poorer quality of life and increased risk of death, according to a multi-country study in Asia.

Preventive drug therapy may increase right-sided heart failure risk in patients who receive heart devices
Patients treated preemptively with drugs to reduce the risk of right-sided heart failure after heart device implantation may experience the opposite effect and develop heart failure and post-operative bleeding more often than patients not receiving the drugs.

How the enzyme lipoxygenase drives heart failure after heart attacks
Heart failure after a heart attack is a global epidemic leading to heart failure pathology.

Novel heart pump shows superior outcomes in advanced heart failure
Severely ill patients with advanced heart failure who received a novel heart pump -- the HeartMate 3 left ventricular assist device (LVAD) -- suffered significantly fewer strokes, pump-related blood clots and bleeding episodes after two years, compared with similar patients who received an older, more established pump, according to research presented at the American College of Cardiology's 68th Annual Scientific Session.

Read More: Heart Failure News and Heart Failure Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to