New wide-angle lens produces pictures without distortion

November 30, 2006

WASHINGTON, Nov. 30 -- South Korean researchers have designed and built an inexpensive optical lens that collects light from a large area and produces a virtually distortion-free wide-angle image. Standing in contrast to commonly known "fisheye" lenses, which produce significant amounts of visual distortion, low-distortion wide-angle lenses can potentially improve image-based applications such as security-camera systems and robot navigation. The new wide-angle lens is lighter, smaller and more affordable than commercially available "rectilinear" lenses, which also produce low-distortion views. The researchers present their new feat of optical technology in the Dec. 1 issue of Applied Optics, a publication of the Optical Society of America.

Made of inexpensive components and available for little more than $100, the new wide-angle lens has been designed specifically to improve indoor security.

"For spacious places with high ceilings such as factories, hotels, theaters, resorts, and auditoriums, the lens can capture the entire floor and this will help security personnel to easily monitor those places," says lead author Gyeong-il Kweon of Homan University in South Korea. In this scenario, the lens would be attached to inexpensive, commercially available bullet cameras, he says.

The principle of a wide-angle lens is simple, according to Kweon.

"Think about holding an immaculate silver spoon above your head and looking up," he says. "Then you will notice that the entire room can be seen from the reflections on the spoon."

But there's a problem, he points out.

The reflected image from the spoon is severely distorted. For example, straight lines become curved, and the distances between objects become skewed. The challenge is to design a lens that collects light from a wide area (i.e., from the entire room) and yields an image that is "perspectively correct," in that it accurately depicts the shapes and relative dimensions of imaged objects.

"The most creative part of our work was the discovery of the right shape of the spoon which gives a perspectively correct image of the room," Kweon says.

An elegant piece of optics technology, the new lens looks like a snow globe in the shape of the U.S. Capitol dome. Light from a large area enters the dome of the lens and encounters a v-shaped mirror. This reflective lens then redirects the light rays to a second lens that resembles the slender statue atop the Capitol dome. This "refractive" lens produces a sharp image of the large area at the exact location of the image sensor within the bullet camera.

The v-shaped lens is called a catoptric (reflective) lens and the second lens is known as a dioptric (refractive) lens, so the combined design is called a "catadioptric" lens.

"Ingenious catadioptric lenses having similar characteristics have been designed by other researchers," says Kweon. However, he says, "those lenses were optically inefficient and were mostly of academic interest."

In contrast, this new design delivers straightforward, practical wide-angle images, producing a "field of view" (FOV) of 151 degrees. The FOV from this technology can be increased to 160 degrees by adding a little more complexity, Kweon says. A FOV of 180 degrees would mean capturing everything that you see in front of you, as well as on your left and right sides. Mathematically, this is the upper limit of what is possible with rectilinear imaging, the kind of imaging that renders straight lines as straight rather than being curved and distorted. By comparison, the human eye has a field of view of approximately 46 degrees.

Some fish-eye lenses have a FOV that exceeds 180 degrees. However, they suffer from "barrel distortion," in which lines are stretched outward. In a fish-eye picture of a jail cell, for example, the metal bars would appear stretched outward, as if a cartoon character had pulled them apart.

Rectilinear lenses, those that produce images without such distortions, are commercially available. However, for technical reasons, these models have a limited field of view, of typically less than 120 degrees. Also, they are bulky, large, and very expensive, costing more than $1,000.

While the new design does not have the FOV of some fisheye lenses, there is no shortage of useful applications for wide-angle cameras with an FOV of less than 180 degrees. One possible application, Kweon says, is to use the lens as an ingredient of intelligent security systems. In this scenario, the new catadioptric lens would capture a large swath of space, and a camera with "pan-tilt" ability would zoom in on the region of interest (ROI), such as the location of an intruder. This can be more effective, Kweon says, than a multitude of cameras watching their respective ROIs.

The new lens is relatively small and commercially available through a South Korean company called Nanophotonics ( that Kweon has started up.

In addition to improving security cameras, many other indoor applications are possible, Kweon says. One possibility, he says, is as a robot navigational aid. "When this lens is installed on a ceiling, the room is captured in a perspectively correct manner. In other words, the captured image is a scaled version of the room. Therefore it is easier to estimate distances and object sizes, and it can help home robots to effectively navigate the room," he says.

With much promise for strengthening image quality, there is one area the researchers are focusing on for improvement: the camera itself unavoidably shows up as a small circle in the center of images, a phenomenon called "central obscuration." By removing the catoptric (reflective) lens, Kweon and his research partner Milton Laikin, a renowned lens-design expert from Los Angeles, have designed another lens that eliminates this problem, but has a narrower field of view, at approximately 120 degrees so far.

Due to its tiny size and delicacy, the current lens can only be used indoors but according to Kweon, it is easy to improve upon this first step and create a larger lens for outdoor commercial needs. "This lens is designed for a bullet camera," he says. "Since a bullet camera is really tiny, I think this imaging system cannot endure the harsh outdoor environment."

"An outdoor version can be made for a larger camera and this lens could be installed on intersections to monitor traffic violations and pedestrians."

"Because it uses a mirror, it is easy to translate the lens design for other wavelengths, such as the infrared," he says. Wide-angle lenses in these other wavelengths have other potential applications, such as wild-fire monitoring and human search-and-rescue.
Paper: "Wide-angle catadioptric lens with a rectilinear projection Scheme," Gyeong-il Kweon, Seung Hwang-bo, Geon-hee Kim, Sun-cheol Yang, and Young-hun Lee, in Applied Optics, 1 December 2006. For a copy of the paper, please contact Colleen Morrison.

About OSA

Celebrating its 90th anniversary in 2006, the Optical Society of America brings together an international network of the industry's preeminent optics and photonics scientists, engineers, educators, technicians and business leaders. Representing over 14,000 members from more than 80 different countries, OSA promotes the worldwide generation, application and dissemination of optics and photonics knowledge through its meetings, events and journals. Since its founding in 1916, OSA member benefits, programming, publications, products and services have set the industry's standard of excellence. Additional information on OSA is available on the Society's Web site at

The Optical Society

Related Light Articles from Brightsurf:

Light from rare earth: new opportunities for organic light-emitting diodes
Efficient and stable blue OLED is still a challenge due to the lack of emitter simultaneously with high efficiency and short excited-state lifetime.

Guiding light: Skoltech technology puts a light-painting drone at your fingertips
Skoltech researchers have designed and developed an interface that allows a user to direct a small drone to light-paint patterns or letters through hand gestures.

Painting with light: Novel nanopillars precisely control intensity of transmitted light
By shining white light on a glass slide stippled with millions of tiny titanium dioxide pillars, researchers at the National Institute of Standards and Technology (NIST) and their collaborators have reproduced with astonishing fidelity the luminous hues and subtle shadings of 'Girl With a Pearl Earring.'

Seeing the light: Researchers combine technologies for better light control
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed by Penn State researchers.

A different slant of light
Giant clams manipulate light to assist their symbiotic partner.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

Scientists use light to accelerate supercurrents, access forbidden light, quantum world
Iowa State's Jigang Wang continues to explore using light waves to accelerate supercurrents to access the unique and potentially useful properties of the quantum world.

The power of light
As COVID-19 continues to ravage global populations, the world is singularly focused on finding ways to battle the novel coronavirus.

Seeing the light: MSU research finds new way novae light up the sky
An international team of astronomers from 40 institutes across 17 countries found that shocks cause most the brightness in novae.

Seeing the light: Astronomers find new way novae light up the sky
An international team of researchers, in a paper published today in Nature Astronomy, highlights a new way novae light up the sky: this is shocks from explosions that create the novae that cause most of the their brightness.

Read More: Light News and Light Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to