Evolution of influenza A virus

November 30, 2006

An understanding of the evolutionary dynamics of the influenza virus determines scientists' ability to survey and control the virus. In a new study, published online in the open-access journal PLoS Pathogens, Dr. Eddie C. Holmes of the Department of Biology at Pennsylvania State University and colleagues at the National Institutes of Health, the Wordsworth Center and the Institute for Genomic Research used genomic analysis to investigate the evolutionary properties of the H3N2 subtype of human influenza A virus.

The authors, in the first population-based study of its kind, collected a sample group of 413 complete influenza genomes from across New York State. Comparative analysis of the samples revealed genetically distinct viral strains circulate across the state within any one season and occasionally exchange genes through reassortment.

These results indicate that adaptive evolution occurs only sporadically in influenza virus, and that influenza virus diversity and evolution is strongly affected by chance events, such as reassortment between strains coinfecting a host or the introduction of a particular variant from elsewhere. These factors make predicting future patterns of influenza virus evolution more difficult, as vaccine strain selection then becomes dependent upon intensive surveillance, whole-genome sequencing, and phenotypic analysis.

This study supported by Cooperative Research 14 Agreement Number U50/CCU223671 from the Centers for Disease Control and Prevention. Laboratory support was provided by M. Kleabonas and R. Bennett at the Wadsworth Center.

Please mention the open-access journal PLoS Pathogens (http://www.plospathogens.org) as the source for this article. Thank you!

PLEASE ADD THIS LINK TO THE PUBLISHED ARTICLE IN ONLINE VERSIONS OF YOUR REPORT: http://dx.doi.org/10.1371/journal.ppat.0020125 (link will go live on November 30 at 5pm Pacific Time)

Citation: Nelson MI, Simonsen L, Viboud C, Miller MA, Taylor J, et al. (2006) Stochastic processes are key determinants of short-term evolution in influenza A virus. PLoS Pathog 2(12): e125. doi:10.1371/journal.ppat.0020125

PRESS-ONLY PREVIEW OF THE ARTICLE: http://www.plos.org/press/plpa-02-12-holmes.pdf

All works published in PLoS Pathogens are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.


Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.