Scientists want to solve puzzle of excess water vapor near cirrus clouds

November 30, 2006

A number of researchers in recent years have reported perplexing findings of water vapor at concentrations as much as twice what they should be in and around cirrus clouds high in the atmosphere, a finding that could alter some conclusions about climate change.

Now a group of European and U.S. scientists is advocating a broad research effort to solve the puzzle and understand just what is occurring in cirrus clouds, wispy sheets of ice crystals 6 to 10 miles above the Earth's surface.

"Based on our current knowledge, it shouldn't exist," said Marcia Baker, a University of Washington professor of Earth and space sciences. She is one of six climate researchers who authored a Perspectives article in the Nov. 30 edition of the journal Science promoting an extensive effort to investigate the dilemma.

Part of the problem is that many atmospheric scientists have dismissed the findings as erroneous because the current understanding of atmospheric conditions and cirrus clouds would make the water vapor anomaly impossible, Baker said. Yet a number of pieces of evidence published in peer-reviewed journals and presented at scientific meetings during the last six years have supported the finding.

Clouds and particles in the atmosphere play a significant role in regulating the Earth's temperature because they help determine how much of the sun's heat and energy is reflected back into space and they trap outgoing radiation from the Earth's surface. Cirrus clouds also are important in regulating the distribution of water vapor, the most important greenhouse gas, in the upper troposphere.

"We have thought our models of the formation and evolution of cirrus clouds are generally adequate in how they portray the role of cirrus clouds in regulating water vapor, but if the recent findings are accurate and high humidities are widespread, our assumptions could need significant adjustment," Baker said.

"The point is to bring this to the more general science audience as a broad puzzle, but also to lay the groundwork for research to solve the puzzle," she said.

Cirrus clouds form in the upper troposphere and modulate the exchange of water between the troposphere and the stratosphere. Vapor in the upper troposphere can rise into the stratosphere but tiny ice crystals can fall back toward the surface.

Outside the clouds, there are water vapor and minute atmospheric particles called aerosols, but no ice crystals. Scientists have come to expect that new ice crystals will begin to form in aerosols when vapor levels rise to the point at which they are 60 percent above equilibrium with the surrounding air. Yet measurements have shown that vapor levels can reach 90 percent to 100 percent above equilibrium without forming new ice particles.

Inside the clouds, it is expected that vapor levels above equilibrium cannot be maintained, yet evidence shows that often vapor levels are as much as 30 percent above equilibrium in large areas of clouds.

Scientists have speculated about what causes these anomalies. It is possible the aerosols might have as-yet undiscovered properties that prevent crystals from forming in some conditions, or there could be some kind of coating on the aerosols that prevents ice from forming, Baker said. There also could be some undiscovered property of ice crystals that prevents them from growing in certain conditions.

"There could be a different phase of ice at the temperatures and pressures in cirrus clouds that has a higher equilibrium for vapor," Baker said. "These are the kinds of questions for which we are trying to find answers."
-end-
The lead author of the Science article is Thomas Peter of the Institute for Atmospheric and Climate Science at Eidgenössische Technische Hochschule of Switzerland. Other co-authors are Claudia Marcolli, Peter Spichtinger and Thierry Corti, also of the climate institute, and Thomas Koop of Bielefeld University in Germany.

For more information, contact Baker at (206) 685-3799 or baker@ess.washington.edu; or Peter at 41-44-633 27 56 or thomas.peter@env.ethz.ch

University of Washington

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.