Manufacturing 'made to measure' atomic-scale electrodes

November 30, 2010

Thanks to collaborative work between scientists in Donostia-San Sebastian and the University of Kiel (Germany) it has been shown that it is possible to determine and control the number of atoms in contact between a molecule and a metal electrode of copper, at the same time as the electric current passing through the union being recorded. These results were published in the Nature Nanotechnology journal.

One of the key problems in nanotechnology is the formation of electrical contacts at an atomic scale. This demands the detailed characterisation of the current flowing through extremely small circuits - so small that their components can be individual atoms or molecules. It is precisely this miniature nature of the system, of typically nanometric dimensions (1 metro = a thousand million nanometers), where the difficulty of this yet unresolved problem arises. In particular, in unions formed by a single molecule, it has been shown that the number of individual atoms making up the contact and their positions are crucial when determining the electric current that is flowing. To date, there has been no experiment where it has been possible to control these parameters with sufficient precision.

In the research published by the Nature Nanotechnology journal, however, these scientists have revealed and explained the changes that the electric current flowing through a molecular union (metal/molecule/metal) undergoes, depending on the area of contact uniting the molecule to the metallic electrodes. Basically, changing the number of atoms in contact with the molecule, one by one, it goes from a low state (bad contact) to another, higher one (good contact) of conduction. With bad contact the current is limited by the area of contact, while with good contact the current is limited by the intrinsic properties of the molecule.
-end-
Taking part in this collaboration project were scientists from the Donostia International Physics Center (DIPC), from the Physics of Materials Centre at the CSIC-University of the Basque Country (UPV/EHU) Mixed Centre and from the Department of the Physics of Materials at the Chemistry Faculty of the UPV/EHU.

Elhuyar Fundazioa

Related Nanotechnology Articles from Brightsurf:

Hiring antibodies as nanotechnology builders
Researchers at the University of Rome Tor Vergata recruit antibodies as molecular builders to assemble nanoscale structures made of synthetic DNA.

Nanotechnology delivers hepatitis B vaccine
X-ray imaging shows that nanostructured silica acts as a protective vehicle to deliver intact antigen to the intestine so that it can trigger an immune response.

Want in on nanotechnology? Capitalize on collaborative environments
Patent law experts demonstrate that private-public partnerships lead to promising innovation output measured in patents.

Nanotechnology makes it possible for mice to see in infrared
Mice with vision enhanced by nanotechnology were able to see infrared light as well as visible light, reports a study published Feb.

Healing kidneys with nanotechnology
In new research appearing in the journal Nature Biomedical Engineering, Hao Yan and his colleagues at the University of Wisconsin-Madison and in China describe a new method for treating and preventing Acute Kidney Injury.

A treasure trove for nanotechnology experts
A team from EPFL and NCCR Marvel has identified more than 1,000 materials with a particularly interesting 2-D structure.

Nanotechnology could redefine oral surgery
A trip to the dentist or orthodontist usually instills a sense of dread in most patients, and that's before the exam even begins.

MEDLINE indexes Pharmaceutical Nanotechnology
Pharmaceutical Nanotechnology, an important journal published by Benthm Science, is accepted to be included in MEDLINE.

Nanotechnology and nanopore sequencing
DNA is the hereditary material in our cells and contains the instructions for them to live, behave, grow, and develop.

Nanotechnology: Lighting up ultrathin films
Based on a study of the optical properties of novel ultrathin semiconductors, researchers of Ludwig-Maximilians-Universitaet in Munich have developed a method for rapid and efficient characterization of these materials.

Read More: Nanotechnology News and Nanotechnology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.