ORNL develops lignin-based thermoplastic conversion process

November 30, 2012

Turning lignin, a plant's structural "glue" and a byproduct of the paper and pulp industry, into something considerably more valuable is driving a research effort headed by Amit Naskar of Oak Ridge National Laboratory.

In a cover article published in Green Chemistry, the research team describes a process that ultimately transforms the lignin byproduct into a thermoplastic - a polymer that becomes pliable above a specific temperature. Researchers accomplished this by reconstructing larger lignin molecules either through a chemical reaction with formaldehyde or by washing with methanol. Through these simple chemical processes, they created a crosslinked rubber-like material that can also be processed like plastics.

"Our work addresses a pathway to utilize lignin as a sustainable, renewable resource material for synthesis of thermoplastics that are recyclable," said Naskar, a member of the Department of Energy laboratory's Material Science and Technology Division.

Instead of using nearly 50 million tons of lignin byproduct produced annually as a low-cost fuel to power paper and pulp mills, the material can be transformed into a lignin-derived high-value plastic. While the lignin byproduct in raw form is worth just pennies a pound as a fuel, the value can potentially increase by a factor of 10 or more after the conversion.

Naskar noted that earlier work on lignin-based plastics utilized material that was available from pulping industries and was a significantly degraded version of native lignin contained in biomass. This decomposition occurs during harsh chemical treatment of biomass.

"Here, however, we attempted to reconstruct larger lignin molecules by a simple crosslinking chemistry and then used it as a substitute for rigid phase in a formulation that behaves like crosslinked rubbers that can also be processed like plastics," Naskar said.

Crosslinking involves building large lignin molecules by combining smaller molecules where formaldehyde helps to bridge the smaller units by chemical bonding. Naskar envisions the process leading to lower cost gaskets, window channels, irrigation hose, dashboards, car seat foam and a number of other plastic-like products.

A similar material can also be made from lignin produced in biorefineries. The paper, titled "Turning renewable resources into value-added polymer: development of lignin-based thermoplastic," is available at http://pubs.rsc.org/en/content/articlepdf/2012/gc/c2gc35933b?page=search
-end-
Other ORNL authors are Tomonori Saito, Rebecca Brown, Marcus Hunt, Deanna Pickel, Joseph Pickel, Jamie Messman, Frederick Baker and Martin Keller. The research was funded by the Laboratory Directed Research and Development program.

Part of the polymer characterization work was conducted at the Center for Nanophase Materials Sciences, one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit http://science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/

UT-Battelle manages ORNL for DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

DOE/Oak Ridge National Laboratory

Related Lignin Articles from Brightsurf:

Utilizing a 'krafty' waste product: Toward enhancing vehicle fuel economy
Researchers from Kanazawa University have chemically modified Kraft lignin -- ordinarily considered in the paper industry to be a waste product -- and used it to produce quality carbon fiber.

CRISPRing trees for a climate-friendly economy
Researchers led by prof. Wout Boerjan (VIB-UGent Center for Plant Systems Biology) have discovered a way to stably finetune the amount of lignin in poplar by applying CRISPR/Cas9 technology.

New process boosts lignin bio-oil as a next-generation fuel
A new low-temperature multi-phase process for upgrading lignin bio-oil to hydrocarbons could help expand use of the lignin, which is now largely a waste product left over from the productions of cellulose and bioethanol from trees and other woody plants.

Lightweight green supercapacitors could charge devices in a jiffy
In a new study, researchers at Texas A&M University have described their novel plant-based energy storage device that could charge even electric cars within a few minutes in the near future.

From biopaste to bioplastic
Forest scientists develop innovative wood-based materials for 3D printing.

Key technology for mass-production of lignin-bio-aviation fuels for reducing greenhouse gas
The team, led by Dr. Jeong-Myeong Ha of the Clean Energy Research Center at the Korea Institute of Science and Technology(KIST), has developed a technology that can be used to mass-produce aviation-grade fuels from wood wastes.

Researchers develop sustainable method for extracting vanillin from wood processing waste
Scientists at Johannes Gutenberg University Mainz (JGU) in Germany have developed a new sustainable method of extracting the flavoring agent vanillin from lignin, a component of wood.

A model for better predicting the unpredictable byproducts of genetic modification
Researchers are interested in genetically modifying trees for a variety of applications, from biofuels to paper production.

A novel biofuel system for hydrogen production from biomass
A recent study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST) has presented a new biofuel system that uses lignin found in biomass for the production of hydrogen.

Plastic from wood
The biopolymer lignin is a by-product of papermaking and a promising raw material for manufacturing sustainable plastic materials.

Read More: Lignin News and Lignin Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.