TSRI scientists find protein 'talks' to wrong partners in cystic fibrosis

November 30, 2015

LA JOLLA, CA - November 30, 2015 - Scientists at The Scripps Research Institute (TSRI) have found evidence that a mutant protein responsible for most cases of cystic fibrosis is so busy "talking" to the wrong cellular neighbors that it cannot function normally and is prematurely degraded.

By removing this chatter, researchers partially restored the protein's normal function. The findings suggest that therapies could one day treat the root cause of cystic fibrosis, not just the symptoms.

"The proteins and the interactions we've identified really fuel the pipeline for new drug targets to treat cystic fibrosis," said Casimir Bamberger, a research associate in the lab of TSRI Professor John R. Yates and co-first author of the new study with TSRI Staff Scientist Sandra Pankow.

The new study was published November 30, 2015, online ahead of print by the journal Nature.

The Root Cause of Cystic Fibrosis

People with cystic fibrosis suffer from persistent infections and mucus build-up in the lungs. While there are treatments to deal with the symptoms--such as antibiotics for infections--there are no therapies that fully restore lung function.

Bamberger, Pankow and their colleagues believe a better understanding of a protein called the cystic fibrosis transmembrane conductance regulator (CFTR) could be the key to developing new treatments. Most patients with cystic fibrosis have a mutation, called ΔF508, in the gene that encodes CFTR, keeping CFTR from folding properly and being processed correctly in cells.

Interestingly, previous studies showed that mutant CFTR regains normal functions at low temperatures.

"Freezing people is not a practical treatment, of course, but this showed us mutant CFTR can be functional," said Pankow. "So the idea behind our new study was to find new drug candidates that could mimic what we see at low temperatures."

Finding Drug Targets

In the new study, the researchers analyzed cell samples with a tool called Co-Purifying Protein Identification Technology (CoPIT), a new method they developed to identify proteins and analyze data. With CoPIT, they identified almost every protein CFTR interacted with--even tracking the secondary and tertiary protein interactions.

The results were surprising. While it was thought that most mutant proteins just lack one or two crucial interactions, the ΔF508 CFTR mutant had acquired an entirely new "disease-specific" interaction network.

"Three hundred proteins changed their level of interaction, and an additional 200 proteins interacted with the mutated CFTR," said Pankow. "It's like the wrong people are talking to the mutated CFTR all the time."

The researchers narrowed these mutant protein interactions to just eight key disruptive proteins. The team then used a gene silencing approach to remove or "knock down" those proteins and block the interaction of these proteins with ΔF508 CFTR. They found that without the additional interactions, ΔF508 CFTR partially returned to normal function.

Pankow and Bamberger said the next step in this research is to look for small molecule drug candidates that could target these disruptive proteins. The researchers have also released their raw CoPIT data publicly so other scientists can explore the clinical implications of CFTR interactions.
-end-
In addition to Bamberger, Yates and Pankow, authors of the study, "ΔF508 CFTR interactome remodeling promotes rescue of Cystic Fibrosis," were Diego Calzolari, Salvador Martínez-Bartolomé, Mathieu Lavallée-Adam and William E. Balch of TSRI.

The study was supported by the National Institutes of Health (grants 5R01HL079442-08, P01AG031097, P41RR011823 and HHSN268201000035C), a Cystic Fibrosis Foundation mass spectrometry fellowship (BALCH050X6) and a postdoctoral fellowship from Fonds Nature et technologies: Accueil (FRQNT).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 2,700 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists--including two Nobel laureates--work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see http://www.scripps.edu.

Scripps Research Institute

Related Cystic Fibrosis Articles from Brightsurf:

Treating cystic fibrosis with mRNA therapy or CRISPR
The potential for treating cystic fibrosis (CF) using mRNA therapies or CRISPR gene editing is possible regardless of the causative mutation.

Cystic fibrosis: why so many respiratory complications?
Cystic fibrosis, one of the most common genetic diseases in Switzerland, causes severe respiratory and digestive disorders.

A newly discovered disease may lead to better treatment of cystic fibrosis
Cystic fibrosis is the most frequent severe inherited disorder worldwide.

New treatment kills off infection that can be deadly to cystic fibrosis patients
The findings, which are published in the journal Scientific Reports, show that scientists from Aston University, Mycobacterial Research Group, combined doses of three antibiotics -- amoxicillin and imipenem-relebactam and found it was 100% effective in killing off the infection which is usually extremely difficult to treat in patients with cystic fibrosis.

Cystic fibrosis carriers are at increased risk for cystic fibrosis-related conditions
A University of Iowa study challenges the conventional wisdom that having just one mutated copy of the cystic fibrosis (CF) gene has no effects on a person's health.

Rare mutations drive cystic fibrosis in Caribbean
Cystic Fibrosis (CF) in the Caribbean is dominated by unusual gene mutations not often observed in previously studied CF populations, according to comprehensive genome sequencing led by physician-scientists at UC San Francisco and Centro de Neumología Pediátrica in San Juan.

Cystic fibrosis carriers at increased risk of digestive symptoms
Researchers have found that carriers of the most common genetic variant that causes cystic fibrosis experience some symptoms similar to those of people with cystic fibrosis.

In cystic fibrosis, lungs feed deadly bacteria
A steady supply of its favorite food helps a deadly bacterium thrive in the lungs of people with cystic fibrosis, according to a new study by Columbia researchers.

Cibio knocks out cystic fibrosis
The fight against cystic fibrosis continues, targeting in particular some of the mutations that cause it.

Hypertonic saline may help babies with cystic fibrosis breathe better
Babies with cystic fibrosis may breathe better by inhaling hypertonic saline, according to a randomized controlled trial conducted in Germany and published in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.

Read More: Cystic Fibrosis News and Cystic Fibrosis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.