Nav: Home

UW researchers estimate poverty and wealth from cell phone metadata

November 30, 2015

In developing or war-ravaged countries where government censuses are few and far between, gathering data for public services or policymaking can be difficult, dangerous or near-impossible. Big data is, after all, mainly a First World opportunity.

But cell towers are easier to install than telephone land lines, even in such challenged areas, and mobile or cellular phones are widely used among the poor and wealthy alike.

Now, researchers with the University of Washington Information School and Computer Science and Engineering Department have devised a way to estimate the distribution of wealth and poverty in an area by studying metadata from calls and texts made on cell phones. Such metadata contains information about the time, location and nature of the "mobile phone events" but not their content. Their paper was published Nov. 27 in the journal Science.

"Quantitative, rigorous measurements are key to making important decisions about social welfare allocation and the distribution of humanitarian aid," said lead author Joshua Blumenstock, assistant professor in the UW Information School, who is also an adjunct professor in computer science and engineering. "But in a lot of developing countries high-quality data doesn't exist.

"What we show in this paper, and I think fairly clearly, is that phone data can be used to estimate wealth and poverty."

The research was performed in Rwanda, a nation of 11 million-some people in East Africa. There in 2009, while still working on his dissertation, Blumenstock oversaw students from the Kigali Institute of Science and Technology as they conducted telephone interviews with 1,000 mobile phone owners chosen at random.

The questions were designed to learn where those individuals fell on the socioeconomic ladder and what the "signature" of wealth is in the metadata -- that is, what cell phone habits are particular to those who are relatively wealthy.

"For those thousand people, we know roughly whether they're rich or poor. That's the ground truth that anchors the data to reality," Blumenstock said.

The researchers then linked that information to metadata about mobile phone use provided by a Rwandan telephone company to determine the hallmarks of socioeconomic status in the data.

Simple patterns emerged -- for instance that wealthier people tended to make more calls than poorer people. But that's just one of thousands of bits of information that aid this process.

Other hints of wealth or poverty in metadata are:
  • The way people pre-pay for phone time; those buying $10 worth of time tend to be wealthier than those buying 50 cents of time.

  • The daily rhythm of calls made -- those phoning during daytime business hours are systematically different from those who make irregular calls, perhaps because they are more likely to be "white-collar" workers.

  • The degree to which a person is more likely to make than receive phone calls. Since in Rwanda the caller pays for the call, poorer people tend to receive more calls than they make. This also reflects a phenomenon called "flashing," where a poorer person calls a wealthier friend and quickly hangs up, thus sending the signal that they should call back.

"In practice it's not simple," Blumenstock said. "We use supervised machine learning algorithms to sort through thousands of patterns to figure out what is most correlated with wealth and poverty. But once we know which mobile phone patterns are indicative of wealth, we can extrapolate to the country's one and a half million cell phone users. We just see for each person thereafter what pattern they follow -- the wealthy pattern or the poor pattern."

Blumenstock's UW co-author, Gabriel Cadamuro, a graduate student in computer science and engineering, said the team tried not to bring expectations of which aspects of the metadata might be found useful for predicting wealth.

"Using the appropriate machine learning technique enabled us to determine which of these values were the most useful," Cadamuro said, "and we noticed that in doing it this way that we picked up a lot we would have missed had we tried to go purely via our intuition."

That information is then overlaid onto area maps to create a visual representation of the geographic distribution of wealth, from the district level to that of households or microvillages.

Blumenstock emphasized that the research is conducted in a way that respects ethical standards and the privacy of the callers, as well as the competitive interests of the phone company providing the data.

Not all governments are able to conduct population censuses and household surveys, and some go decades in between. In Rwanda, household surveys occur every three to five years. Blumenstock said based on the government's 2010 survey, the 2009 mobile phone metadata proved more effective at indicating wealth and poverty than the previous Rwandan government survey in 2007.

Blumenstock and colleagues suggest that governments might use this sort of survey process, which costs about $10,000, rather than spend millions on a formal countrywide census.

"We are saying, if you have nothing else and can't survey the outer regions of the country, this creates an option to spend $10,000 and get interim estimates of what things look like, and to construct a higher-resolution estimate of the geographic distribution of wealth," he said.

This early work is mostly "proof of concept" at this stage, Blumenstock said, but the researchers can envision many practical uses to come.

Cadamuro said, "We are hopeful that this broad approach to detecting signals means that the methodology would work even on different call networks from different countries."

"What else could you measure that would be useful?" Blumenstock asked. "You could imagine using data from Twitter, Internet use, satellite and weather stations -- all this data -- to measure population vulnerability, or to make better policy," he said.

"Maybe you could even detect with phone data whether people have been skipping meals -- it doesn't seem to me that far-fetched."
The other co-author is Robert On, a graduate student at the University of California, Berkeley.

The research was funded by the NSF; the Institute for Money, Technology, and Financial Inclusion; and the Gates Foundation.

For more information, contact Blumenstock at 206-685-8746 or

NSF grant #1025103

Institute for Money, Technology, and Financial Inclusion grant # 2010-2366

Gates Foundation grant # OPP1106936

University of Washington

Related Poverty Articles:

If you're poor, poverty is an environmental issue
A survey from Cornell researchers -- conducted among more than 1,100 US residents -- found that there were, in fact, demographic differences in how people viewed environmental issues, with racial and ethnic minorities and lower-income people more likely to consider human factors such as racism and poverty as environmental, in addition to more ecological issues like toxic fumes from factories or car exhaust.
Poverty associated with suicide risk in children and adolescents
Between 2007 to 2016, nearly 21,000 children ages 5-19 years old died by suicide.
New index maps relationships between poverty and accessibility in Brazil
Poor transportation availability can result in poor access to health care and employment, hence reinforcing the cycle of poverty and concerning health outcomes such as low life expectancy and high child mortality in rural Brazil.
Repeated periods of poverty accelerate the ageing process
People who have found themselves below the relative poverty threshold four or more times in their adult life age significantly earlier than others.
Poverty as disease trap
The realities of subsistence living in a region of Senegal hard hit by schistosomiasis make reinfection likely, despite mass drug administration.
Persistent poverty affects one in five UK children
Persistent poverty affects one in five children in the UK, and is associated with poor physical and mental health in early adolescence, suggests research published online in the Archives of Disease in Childhood.
Poverty leaves a mark on our genes
In this study, researchers found evidence that poverty can become embedded across wide swaths of the genome.
Satellite images reveal global poverty
How far have we come in achieving the UN's sustainable development goals that we are committed to nationally and internationally?
Lack of paid sick leave increases poverty
A new study has quantified, for the first time, the relationship between lack of paid sick leave and poverty in the US.
New mapping technique can help fight extreme poverty
A new mapping technique, described in the Nov. 14 issue of the Proceedings of the National Academies of Sciences, shows how researchers are developing computational tools that combine cellphone records with data from satellites and geographic information systems to create timely and incredibly detailed poverty maps.
More Poverty News and Poverty Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at