Nav: Home

ANU demonstrates 'ghost imaging' with atoms

November 30, 2016

A team of physicists at The Australian National University (ANU) have used a technique known as 'ghost imaging' to create an image of an object from atoms that never interact with it.

This is the first time that ghost imaging has been achieved using atoms, although it has previously been demonstrated with light, leading to applications being developed for imaging and remote sensing through turbulent environments.

The atom-based result may lead to a new method for quality control of nanoscale manufacturing, including atomic scale 3D printing.

Lead researcher Associate Professor Andrew Truscott from the ANU Research School of Physics and Engineering (RSPE) said the experiment relied on correlated pairs of atoms.

The pairs were separated by around six centimetres and used to generate an image of the ANU logo.

"One atom in each pair was directed towards a mask with the letters 'ANU' cut-out," Associate Professor Truscott said.

"Only atoms that pass through the mask reach a 'bucket' detector placed behind the mask, which records a 'ping' each time an atom hits it.

The second atom in the pair records a 'ping' along with the atom's location on a second spatial detector.

"By matching the times of the 'pings' from pairs of atoms we were able to discard all atoms hitting the spatial detector whose partner had not passed through the mask.

"This allowed an image of 'ANU' to be recreated, even though - remarkably - the atoms forming the image on the spatial detector had never interacted with the mask. That's why the image is termed a 'ghost'."

Professor Ken Baldwin, also from the RSPE team, said the research may eventually be used for quality control in manufacturing microchips or nano devices.

"We might one day be able to detect in real time when a problem occurs in the manufacturing of a microchip or a nano device," Professor Baldwin said.

Co-author Dr Sean Hodgman said on a fundamental level, the research could also be a precursor to investigating entanglement between massive particles, which could help the development of quantum computation.

"This research could open up techniques to probe quantum entanglement, otherwise known as Einstein's spooky action at a distance," Dr Hodgman said.
-end-
The ANU team also included PhD students Roman Khakimov, Bryce Henson and David Shin.

The research is published in the journal Nature: http://www.nature.com/nature/journal/v540/n7631/full/nature20154.html

MEDIA NOTE: Images related to the research and a copy of the Nature paper are available via this cloudstor link: https://cloudstor.aarnet.edu.au/plus/index.php/s/JVvos9mwXQttAzt

Australian National University

Related Physics Articles:

Diamonds coupled using quantum physics
Researchers at TU Wien have succeeded in coupling the specific defects in two such diamonds with one another.
The physics of wealth inequality
A Duke engineering professor has proposed an explanation for why the income disparity in America between the rich and poor continues to grow.
Physics can predict wealth inequality
The 2016 election year highlighted the growing problem of wealth inequality and finding ways to help the people who are falling behind.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Flowers use physics to attract pollinators
A new review indicates that flowers may be able to manipulate the laws of physics, by playing with light, using mechanical tricks, and harnessing electrostatic forces to attract pollinators.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
2-D physics
Physicist Andrea Young receives a 2016 Packard Fellowship to pursue his studies of van der Waals heterostructures.
Cats seem to grasp the laws of physics
Cats understand the principle of cause and effect as well as some elements of physics.
Plasma physics' giant leap
For the first time, scientists are looking at real data -- not computer models, but direct observation -- about what is happening in the fascinating region where the Earth's magnetic field breaks and then joins with the interplanetary magnetic field.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Physics Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".