Nav: Home

Flu forecasts successful on neighborhood level

November 30, 2016

Scientists at Columbia University's Mailman School of Public Health developed a computer model to predict the onset, duration, and magnitude of influenza outbreaks for New York City boroughs and neighborhoods. They found the model effective in a test using data from 2008-2013; results appear in the journal PLOS Computational Biology.

The researchers are the first to successfully forecast influenza with this level of geographic granularity. "Much like weather forecasts, flu forecasts are most useful at the local level," says lead author Wan Yang, associate research scientist in the Department of Environmental Health Sciences. "Our goal is to provide information so individuals and public health authorities can take measures to prevent illness."

Yang and senior investigator Jeffrey Shaman, associate professor of Environmental Health Sciences, have previously demonstrated success forecasting the flu on the state and city level. In this study, they tested a new method to provide more localized predictions using data on incidence of influenza-like illness from 52 city emergency departments provided by the New York City Department of Health and Mental Hygiene combined with lab-verified regional flu levels from the U.S. Centers for Disease Control and Prevention. By incorporating information on daily population movement within the city (the paper uses the technical term, "network connectivity"), they report they were able to forecast influenza activity at a much more localized geographic scale.

"By adding information on the city's commuter patterns, we were able to boost signal, providing a much clearer picture on when outbreaks would take place, how long they would last, and how severe they might be," says Shaman. Like a weather forecast, flu predictions are made with varying degrees of certainty (for instance, an 80 percent change of a flu outbreak in the Bronx).

The model was able to predict a small uptick in flu activity one week in advance 82 percent of the time; it predicted larger spikes with less accuracy. For severe and ongoing outbreaks, it predicted outbreak duration with 77 percent accuracy. It could correctly estimate an outbreak's magnitude up to 54 percent of the time.

The researchers observed flu outbreaks occurring simultaneously in all five boroughs, including the 2009 pandemic, which was many times more intense than the other outbreaks during the six-year period. For reasons not understood, outbreaks were slightly more severe in Queens. Outbreaks in Staten Island were less intense; however, according to the researchers, this was an artifact as influenza-like illness in the borough was only recorded when a patient was hospitalized.

Among 42 neighborhoods corresponding to local hospital use, the researchers observed greater geographic variation in outbreak intensity and timing -- sometimes weeks apart (video illustrating neighborhood-level outbreaks is available along with the published paper). Adding network connectivity at this level degraded neighborhood forecast accuracy -- something the researchers say reflects the fact that connection between neighborhoods does not match with commuter flows. Ongoing work is exploring alternate data sources to refine neighborhood-level forecasts.

As of now, the researchers are not providing borough and neighborhood-level forecasts in real time. For real-time forecasts on the city level, visit the Columbia Prediction of Infectious Disease website, which reports weekly forecasts during the active flu season (as of November 30, 2016, activity remained low).
-end-
Donald R. Olson at the New York City Department of Health and Mental Hygiene is a co-author on the paper. This work was supported by U.S. National Institutes of Health grants GM100467, GM110748, and ES009089, and Defense Threat Reduction Agency contract HDTRA1-15-C-0018. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Columbia University's Mailman School of Public Health

Founded in 1922, Columbia University's Mailman School of Public Health pursues an agenda of research, education, and service to address the critical and complex public health issues affecting New Yorkers, the nation and the world. The Mailman School is the third largest recipient of NIH grants among schools of public health. Its over 450 multi-disciplinary faculty members work in more than 100 countries around the world, addressing such issues as preventing infectious and chronic diseases, environmental health, maternal and child health, health policy, climate change & health, and public health preparedness. It is a leader in public health education with over 1,300 graduate students from more than 40 nations pursuing a variety of master's and doctoral degree programs. The Mailman School is also home to numerous world-renowned research centers including ICAP (formerly the International Center for AIDS Care and Treatment Programs) and the Center for Infection and Immunity. For more information, please visit http://www.mailman.columbia.edu.

Columbia University's Mailman School of Public Health

Related Influenza Articles:

Birds become immune to influenza
An influenza infection in birds gives a good protection against other subtypes of the virus, like a natural vaccination, according to a new study.
Researchers shed new light on influenza detection
Notre Dame Researchers have discovered a way to make influenza visible to the naked eye, by engineering dye molecules to target a specific enzyme of the virus.
Maternal vaccination again influenza associated with protection for infants
How long does the protection from a mother's immunization against influenza during pregnancy last for infants after they are born?
Influenza in the tropics shows variable seasonality
Whilst countries in the tropics and subtropics exhibit diverse patterns of seasonal flu activity, they can be grouped into eight geographical zones to optimise vaccine formulation and delivery timing, according to a study published April 27, 2016 in the open-access journal PLOS ONE.
Influenza viruses can hide from the immune system
Influenza is able to mask itself, so that the virus is not initially detected by our immune system.
Using 'big data' to combat influenza
Team of scientists from the Icahn School of Medicine at Mount Sinai and Sanford Burnham Prebys Medical Discovery Institute among those who combined large genomic and proteomic datasets to identify novel host targets to treat flu.
Rapidly assessing the next influenza pandemic
Influenza pandemics are potentially the most serious natural catastrophes that affect the human population.
Early detection of highly pathogenic influenza viruses
Lack of appropriate drugs and vaccines during the influenza A virus pandemic in 2009, the recent Ebola epidemic in West Africa, as well as the ongoing Middle Eastern Respiratory Syndrome-Coronavirus outbreak demonstrates that the world is only insufficiently prepared for global attacks of emerging infectious diseases and that the handling of such threats remains a great challenge.
Study maps travel of H7 influenza genes
In a new bioinformatics analysis of the H7N9 influenza virus that has recently infected humans in China, researchers trace the separate phylogenetic histories of the virus's genes, giving a frightening new picture of viruses where the genes are traveling independently in the environment, across large geographic distances and between species, to form 'a new constellation of genes -- a new disease, based not only on H7, but other strains of influenza.'
Influenza A potentiates pneumococcal co-infection: New details emerge
Influenza infection can enhance the ability of the bacterium Streptococcus pneumoniae to cause ear and throat infections, according to research published ahead of print in the journal Infection and Immunity.

Related Influenza Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".