Nav: Home

Cyclic change within magma reservoirs affects the explosivity of volcanic eruptions

November 30, 2016

A new study published in Geology uses pockets of melts trapped within crystals to understand the conditions occurring beneath volcanoes before explosive eruptions. Volcanologists from Johannes Gutenberg University Mainz (JGU), Leibniz Universität Hannover in Germany and Uppsala University in Sweden have discovered that the temperature and water content of magmas varies through the lifecycle of a volcano, and that these variations occur in cycles in relation to the fresh input of new magma from below. The study suggests that the point at which an eruption occurs within these cycles may control whether the resulting eruption is explosive, which produces lots of ash and affects a wide geographical region, or simply erupts effusively creating lava flows or domes, lessening the hazards to nearby populations.

The study was conducted on Kelud volcano in Indonesia, which is considered to be one of the most dangerous volcanoes in the world, with more than two million people living within 30 kilometers of it, and a death toll of more than 5,000 people killed in eruptions in the last century alone. Kelud erupted explosively as recently as 2014, dispersing ash more than 200 kilometers away, leading to the evacuation of 200,000 people, closing three international airports and killing several people. But Kelud, like many volcanoes, is unpredictable in the sense that it often changes the way it erupts. In 2014 the eruption was explosive, but in 2007 the eruption produced little ash and instead created a small lava flow within the crater.

The researchers found that before the 2014 explosive eruption at Kelud, the magma was in a cool and water-rich state, whereas in 2007, before the less explosive lava dome eruption, the magma was hotter and dryer. "Even relatively small changes in the temperature and water content of the magma can drastically alter the chemical and physical properties of the unerupted magma," explained lead author Dr. Mike Cassidy from the Institute of Geosciences at Mainz University. "For instance, when the temperature drops, this makes the magma stickier, which means the gas finds it harder to escape, thus building up pressure leading to an explosive eruption."

The hotter and dryer magma conditions are attributed to the fresh input of water-poor magma from below, which mixes and thus dilutes the magma in water content. The study goes some way to explaining why volcanoes erupt in different ways and could in the future help to forecast how explosive an impending eruption will be.
-end-


Johannes Gutenberg Universitaet Mainz

Related Magma Articles:

Volcanic crystals give a new view of magma
Volcanologists are gaining a new understanding of what's going on inside the magma reservoir that lies below an active volcano and they're finding a colder, more solid place than previously thought, according to new research published June 16 in the journal Science.
Thermal history of magma may help scientists hone in on volcanic eruption forecasts
A new study analyzed crystals of the mineral zircon -- zirconium silicate -- in magma from an eruption in the Taupo Volcanic Zone in New Zealand about 700 years ago to determine the magma's history.
Crystals once deep inside a volcano offer new view of magma, eruption timing
Volcanologists are gaining a better understanding of what's going on inside the magma reservoir that lies below New Zealand's Mount Tarawera volcano.
Forget the red hot blob: Volcanic zircon crystals give new view of magma
The classic red teardrop of magma underneath a volcano peak is too simplistic.
Deep magma reservoirs are key to volcanic 'super-eruptions', new research suggests
Large reservoirs of magma stored deep in the Earth's crust are key to producing some of the Earth's most powerful volcanic eruptions, new research has shown.
New study documents aftermath of a supereruption, and expands size of Toba magma system
The rare but spectacular eruptions of supervolcanoes can cause massive destruction and affect climate patterns on a global scale for decades -- and a new study has found that these sites also may experience ongoing, albeit smaller eruptions for tens of thousands of years after.
Copper-bottomed deposits
Researchers at UNIGE have studied over 100,000 combinations to establish the depth and number of years required for magma to produce a given amount of copper.
The Deccan Traps: Double, double magma trouble
A new study suggests that roughly 65 million years ago, not just one plume of magma, but two, fueled the mass eruption along the Deccan Traps, an event that contributed to one of the greatest extinction events on Earth.
The secret of the supervolcano
Researchers have now found an explanation for what triggered the largest volcanic eruption witnessed by mankind.
Modeling magma to find copper
About 70 percent of the copper comes from deposits formed several million years ago during events of magma degassing within the Earth's crust just above subduction zones.

Related Magma Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".