Nav: Home

Human ancestor 'Lucy' was a tree climber, new evidence suggests

November 30, 2016

Since the discovery of the fossil dubbed Lucy 42 years ago this month, paleontologists have debated whether the 3 million-year-old human ancestor spent all of her time walking on the ground or instead combined walking with frequent tree climbing. Now, analysis of special CT scans by scientists from The Johns Hopkins University and the University of Texas at Austin suggests the female hominin spent enough time in the trees that evidence of this behavior is preserved in the internal structure of her bones. A description of the research study appears November 30 in the journal PLOS ONE.

Analysis of the partial fossilized skeleton, the investigators say, shows that Lucy's upper limbs were heavily built, similar to champion tree-climbing chimpanzees, supporting the idea that she spent time climbing and used her arms to pull herself up. In addition, they say, the fact that her foot was better adapted for bipedal locomotion (upright walking) than grasping may mean that climbing placed additional emphasis on Lucy's ability to pull up with her arms and resulted in more heavily built upper limb bones.

Exactly how much time Lucy spent in the trees is difficult to determine, the research team says, but another recent study suggests Lucy died from a fall out of a tall tree. This new study adds to evidence that she may have nested in trees at night to avoid predators, the authors say. An eight-hour slumber would mean she spent one-third of her time up in the trees, and if she also occasionally foraged there, the total percentage of time spent above ground would be even greater.

Lucy, housed in the National Museum of Ethiopia, is a 3.18 million-year-old specimen of Australopithecus afarensis -- or southern ape of Afar -- and is among the oldest, most complete fossil skeletons ever found of any adult, erect-walking human ancestor. She was discovered in the Afar region of Ethiopia in 1974 by Arizona State University anthropologist Donald Johanson and graduate student Tom Gray. The new study analyzed CT scan images of her bones for clues to how she used her body during her lifetime. Previous studies suggest she weighed less than 65 pounds and was under 4 feet tall.

"We were able to undertake this study thanks to the relative completeness of Lucy's skeleton," says Christopher Ruff, Ph.D., a professor of functional anatomy and evolution at the Johns Hopkins University School of Medicine. "Our analysis required well-preserved upper and lower limb bones from the same individual, something very rare in the fossil record."

The research team first had a look at Lucy's bone structure during her U.S. museum tour in 2008, when the fossil was detoured briefly to the High-Resolution X-Ray Computed Tomography Facility in the University of Texas at Austin Jackson School of Geosciences. For 11 days, John Kappelman, Ph.D., anthropology and geological sciences professor, and geological sciences professor Richard Ketcham, Ph.D., both of the University of Texas at Austin, carefully scanned all of her bones to create a digital archive of more than 35,000 CT slices. High-resolution CT scans were necessary because Lucy is so heavily mineralized that conventional CT is not powerful enough to image the internal structure of her bones.

"We all love Lucy," Ketcham says, "but we had to face the fact that she is a rock. The time for standard medical CT scanning was 3.18 million years ago. This project required a scanner more suited to her current state."

The new study uses CT slices from those 2008 scans to quantify the internal structure of Lucy's right and left humeri (upper arm bones) and left femur (thigh bone).

"Our study is grounded in mechanical engineering theory about how objects can facilitate or resist bending," says Ruff, "but our results are intuitive because they depend on the sorts of things that we experience about objects -- including body parts -- in everyday life. If, for example, a tube or drinking straw has a thin wall, it bends easily, whereas a thick wall prevents bending. Bones are built similarly."

"It is a well-established fact that the skeleton responds to loads during life, adding bone to resist high forces and subtracting bone when forces are reduced," explains Kappelman. "Tennis players are a nice example: Studies have shown that the cortical bone in the shaft of the racquet arm is more heavily built up than that in the nonracquet arm."

A major issue in the debate over Lucy's tree climbing has been how to interpret skeletal features that might be simply "leftovers" from a more primitive ancestor that had relatively long arms, for example. The advantage of the new study, Ruff says, is that it focused on characteristics that reflect actual behavior during life.

Lucy's scans were compared with CT scans from a large sample of modern humans, who spend the majority of their time walking on two legs on the ground, and with chimpanzees, a species that spends more of its time in the trees and, when on the ground, usually walks on all four limbs.

"Our results show that the upper limbs of chimpanzees are relatively more heavily built because they use their arms for climbing, with the reverse seen in humans, who spend more time walking and have more heavily built lower limbs," says Ruff. "The results for Lucy are convincing and intuitive."

Other comparisons carried out in the study suggest that even when Lucy walked upright, she may have done so less efficiently than modern humans, limiting her ability to walk long distances on the ground, Ruff says. In addition, all of her limb bones were found to be very strong relative to her body size, indicating that she had exceptionally strong muscles, more like those of modern chimpanzees than modern humans. A reduction in muscle power later in human evolution may be linked to better technology that reduced the need for physical exertion and the increased metabolic demands of a larger brain, the researchers say.

"It may seem unique from our perspective that early hominins like Lucy combined walking on the ground on two legs with a significant amount of tree climbing," says Kappelman, "but Lucy didn't know she was "unique" -- she moved on the ground and climbed in trees, nesting and foraging there, until her life was likely cut short by a fall -- probably out of a tree."
-end-
Graduate student M. Loring Burgess of the Johns Hopkins University School of Medicine was also an author on the paper.

The study was funded by the Paleoanthropology Lab Fund, the University of Texas at Austin College of Liberal Arts and the Houston Museum of Natural Science. The University of Texas High-Resolution X-Ray CT Facility was supported by U.S. National Science Foundation grants EAR-0646848, EAR-0948842 and EAR-1258878. Comparative data were gathered with support from U.S. National Science Foundation grants BCS-0642297 and BCS-1316104.

Johns Hopkins Medicine

Related Fossil Articles:

Charred flowers and the fossil record
One of the main types of fossil used to understand the first flowering plants (angiosperms) are charred flowers.
Scientists find world's oldest fossil mushroom
Roughly 115 million years ago, when the ancient supercontinent Gondwana was breaking apart, a mushroom fell into a river and began an improbable journey.
The oldest fossil giant penguin
Together with colleagues from New Zealand, Senckenberg scientist Dr. Gerald Mayr described a recently discovered fossil of a giant penguin with a body length of around 150 centimeters.
Rare fossil discovery raises questions
Adult and juvenile remains of a giant rodent species (Isostylomys laurdillardi) have been uncovered by researchers, in the Río de la Plata coastal region of southern Uruguay, raising questions about classification within dinomids.
Fossil discovery rewrites understanding of reproductive evolution
A remarkable 250-million-year-old 'terrible-headed lizard' fossil found in China shows an embryo inside the mother -- clear evidence for live birth.
A 'transitional fossil' debunked
Snakes are a very diverse group of present-day reptiles, with nearly 3,600 known species.
Tiny fossil horses put their back into it
A new study reveals that tiny fossil ancestors of modern horses may have moved quite differently to their living counterparts.
New technologies to eliminate fossil fuel use in the sugar industry
QUT researchers are developing and testing new technologies as part of a $5.7 million three-year project with the potential to eliminate the use of fossil fuels in the sugar industry.
Many species now going extinct may vanish without a fossil trace
Scientists struggle to compare the magnitude of Earth's ongoing sixth mass-extinction event with the five great die-offs of prehistory.
The 'ugliest fossil reptiles' who roamed China
Long before the dinosaurs, hefty herbivores called pareiasaurs ruled the Earth.

Related Fossil Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".